
Android Studio Giraffe
Essentials

Java Edition
Title

Android Studio Giraffe Essentials – Java Edition

ISBN-13: 978-1-951442-74-3

© 2023 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0
Copyright

i

Contents
Table of Contents
1. Introduction ... 1

1.1 Downloading the Code Samples ... 1
1.2 Feedback ... 1
1.3 Errata... 2

2. Setting up an Android Studio Development Environment ... 3
2.1 System requirements ... 3
2.2 Downloading the Android Studio package ... 3
2.3 Installing Android Studio ... 4

2.3.1 Installation on Windows ... 4
2.3.2 Installation on macOS ... 4
2.3.3 Installation on Linux .. 5

2.4 The Android Studio setup wizard ... 5
2.5 Installing additional Android SDK packages .. 6
2.6 Installing the Android SDK Command-line Tools ... 9

2.6.1 Windows 8.1 ... 10
2.6.2 Windows 10 .. 11
2.6.3 Windows 11 .. 11
2.6.4 Linux .. 11
2.6.5 macOS .. 11

2.7 Android Studio memory management .. 11
2.8 Updating Android Studio and the SDK ... 12
2.9 Summary .. 13

3. Creating an Example Android App in Android Studio ... 15
3.1 About the Project .. 15
3.2 Creating a New Android Project ... 15
3.3 Creating an Activity .. 16
3.4 Defining the Project and SDK Settings .. 16
3.5 Enabling the New Android Studio UI .. 17
3.6 Modifying the Example Application ... 18
3.7 Modifying the User Interface .. 19
3.8 Reviewing the Layout and Resource Files .. 25
3.9 Adding Interaction .. 28
3.10 Summary .. 29

4. Creating an Android Virtual Device (AVD) in Android Studio ... 31
4.1 About Android Virtual Devices .. 31
4.2 Starting the Emulator .. 33
4.3 Running the Application in the AVD ... 34
4.4 Running on Multiple Devices .. 35
4.5 Stopping a Running Application ... 36
4.6 Supporting Dark Theme ... 36
4.7 Running the Emulator in a Separate Window ... 37

Contents

ii

Table of Contents

4.8 Enabling the Device Frame .. 40
4.9 Summary .. 41

5. Using and Configuring the Android Studio AVD Emulator .. 43
5.1 The Emulator Environment ... 43
5.2 Emulator Toolbar Options ... 43
5.3 Working in Zoom Mode .. 45
5.4 Resizing the Emulator Window... 45
5.5 Extended Control Options ... 45

5.5.1 Location ... 46
5.5.2 Displays .. 46
5.5.3 Cellular .. 46
5.5.4 Battery .. 46
5.5.5 Camera ... 46
5.5.6 Phone ... 46
5.5.7 Directional Pad ... 46
5.5.8 Microphone ... 46
5.5.9 Fingerprint .. 46
5.5.10 Virtual Sensors ... 47
5.5.11 Snapshots ... 47
5.5.12 Record and Playback ... 47
5.5.13 Google Play ... 47
5.5.14 Settings .. 47
5.5.15 Help .. 47

5.6 Working with Snapshots ... 47
5.7 Configuring Fingerprint Emulation ... 48
5.8 The Emulator in Tool Window Mode ... 50
5.9 Creating a Resizable Emulator ... 50
5.10 Summary .. 51

6. A Tour of the Android Studio User Interface .. 53
6.1 The Welcome Screen ... 53
6.2 The Menu Bar .. 54
6.3 The Main Window .. 54
6.4 The Tool Windows .. 56
6.5 The Tool Window Menus ... 59
6.6 Android Studio Keyboard Shortcuts .. 59
6.7 Switcher and Recent Files Navigation .. 60
6.8 Changing the Android Studio Theme .. 61
6.9 Summary .. 62

7. Testing Android Studio Apps on a Physical Android Device .. 63
7.1 An Overview of the Android Debug Bridge (ADB) ... 63
7.2 Enabling USB Debugging ADB on Android Devices ... 63

7.2.1 macOS ADB Configuration .. 64
7.2.2 Windows ADB Configuration .. 65
7.2.3 Linux adb Configuration ... 66

7.3 Resolving USB Connection Issues .. 66
7.4 Enabling Wireless Debugging on Android Devices ... 67
7.5 Testing the adb Connection ... 69
7.6 Device Mirroring ... 69

iii

Table of Contents

7.7 Summary .. 69
8. The Basics of the Android Studio Code Editor .. 71

8.1 The Android Studio Editor... 71
8.2 Splitting the Editor Window .. 74
8.3 Code Completion .. 74
8.4 Statement Completion .. 76
8.5 Parameter Information ... 76
8.6 Parameter Name Hints ... 76
8.7 Code Generation ... 77
8.8 Code Folding .. 78
8.9 Quick Documentation Lookup ... 79
8.10 Code Reformatting.. 79
8.11 Finding Sample Code ... 80
8.12 Live Templates ... 80
8.13 Summary .. 81

9. An Overview of the Android Architecture .. 83
9.1 The Android Software Stack .. 83
9.2 The Linux Kernel ... 84
9.3 Android Runtime – ART .. 84
9.4 Android Libraries .. 84

9.4.1 C/C++ Libraries ... 85
9.5 Application Framework .. 85
9.6 Applications ... 86
9.7 Summary .. 86

10. The Anatomy of an Android App ... 87
10.1 Android Activities ... 87
10.2 Android Fragments ... 87
10.3 Android Intents ... 88
10.4 Broadcast Intents ... 88
10.5 Broadcast Receivers .. 88
10.6 Android Services ... 88
10.7 Content Providers ... 89
10.8 The Application Manifest ... 89
10.9 Application Resources .. 89
10.10 Application Context .. 89
10.11 Summary .. 89

11. An Overview of Android View Binding ... 91
11.1 Find View by Id ... 91
11.2 View Binding .. 91
11.3 Converting the AndroidSample project ... 92
11.4 Enabling View Binding ... 92
11.5 Using View Binding .. 92
11.6 Choosing an Option ... 93
11.7 View Binding in the Book Examples .. 93
11.8 Migrating a Project to View Binding .. 94
11.9 Summary .. 94

12. Understanding Android Application and Activity Lifecycles ... 97

iv

Table of Contents

12.1 Android Applications and Resource Management ... 97
12.2 Android Process States ... 97

12.2.1 Foreground Process ... 98
12.2.2 Visible Process .. 98
12.2.3 Service Process ... 98
12.2.4 Background Process ... 98
12.2.5 Empty Process .. 99

12.3 Inter-Process Dependencies ... 99
12.4 The Activity Lifecycle .. 99
12.5 The Activity Stack .. 99
12.6 Activity States .. 100
12.7 Configuration Changes .. 100
12.8 Handling State Change ... 101
12.9 Summary .. 101

13. Handling Android Activity State Changes... 103
13.1 New vs. Old Lifecycle Techniques ... 103
13.2 The Activity and Fragment Classes ... 103
13.3 Dynamic State vs. Persistent State ... 105
13.4 The Android Lifecycle Methods .. 106
13.5 Lifetimes ... 107
13.6 Foldable Devices and Multi-Resume .. 108
13.7 Disabling Configuration Change Restarts ... 108
13.8 Lifecycle Method Limitations .. 109
13.9 Summary .. 109

14. Android Activity State Changes by Example ... 111
14.1 Creating the State Change Example Project .. 111
14.2 Designing the User Interface ... 112
14.3 Overriding the Activity Lifecycle Methods ... 113
14.4 Filtering the Logcat Panel... 115
14.5 Running the Application .. 117
14.6 Experimenting with the Activity ... 117
14.7 Summary .. 118

15. Saving and Restoring the State of an Android Activity ... 119
15.1 Saving Dynamic State ... 119
15.2 Default Saving of User Interface State .. 119
15.3 The Bundle Class ... 120
15.4 Saving the State .. 121
15.5 Restoring the State .. 122
15.6 Testing the Application ... 122
15.7 Summary .. 122

16. Understanding Android Views, View Groups and Layouts .. 125
16.1 Designing for Different Android Devices .. 125
16.2 Views and View Groups ... 125
16.3 Android Layout Managers ... 125
16.4 The View Hierarchy .. 127
16.5 Creating User Interfaces ... 128
16.6 Summary .. 128

v

Table of Contents

17. A Guide to the Android Studio Layout Editor Tool .. 129
17.1 Basic vs. Empty Views Activity Templates ... 129
17.2 The Android Studio Layout Editor ... 133
17.3 Design Mode .. 133
17.4 The Palette .. 134
17.5 Design Mode and Layout Views.. 135
17.6 Night Mode .. 136
17.7 Code Mode ... 136
17.8 Split Mode .. 137
17.9 Setting Attributes... 138
17.10 Transforms ... 139
17.11 Tools Visibility Toggles ... 140
17.12 Converting Views .. 141
17.13 Displaying Sample Data ... 142
17.14 Creating a Custom Device Definition ... 143
17.15 Changing the Current Device.. 143
17.16 Layout Validation .. 144
17.17 Summary .. 145

18. A Guide to the Android ConstraintLayout .. 147
18.1 How ConstraintLayout Works ... 147

18.1.1 Constraints .. 147
18.1.2 Margins .. 148
18.1.3 Opposing Constraints.. 148
18.1.4 Constraint Bias ... 149
18.1.5 Chains .. 150
18.1.6 Chain Styles ... 150

18.2 Baseline Alignment ... 151
18.3 Configuring Widget Dimensions .. 151
18.4 Guideline Helper ... 152
18.5 Group Helper ... 152
18.6 Barrier Helper .. 152
18.7 Flow Helper .. 154
18.8 Ratios .. 155
18.9 ConstraintLayout Advantages ... 155
18.10 ConstraintLayout Availability.. 156
18.11 Summary .. 156

19. A Guide to Using ConstraintLayout in Android Studio ... 157
19.1 Design and Layout Views ... 157
19.2 Autoconnect Mode ... 159
19.3 Inference Mode .. 159
19.4 Manipulating Constraints Manually ... 159
19.5 Adding Constraints in the Inspector .. 161
19.6 Viewing Constraints in the Attributes Window .. 161
19.7 Deleting Constraints ... 162
19.8 Adjusting Constraint Bias .. 163
19.9 Understanding ConstraintLayout Margins .. 163
19.10 The Importance of Opposing Constraints and Bias ... 165
19.11 Configuring Widget Dimensions .. 167

vi

Table of Contents

19.12 Design Time Tools Positioning ... 168
19.13 Adding Guidelines .. 169
19.14 Adding Barriers ... 171
19.15 Adding a Group ... 172
19.16 Working with the Flow Helper .. 173
19.17 Widget Group Alignment and Distribution .. 173
19.18 Converting other Layouts to ConstraintLayout .. 175
19.19 Summary ... 175

20. Working with ConstraintLayout Chains and Ratios in Android Studio .. 177
20.1 Creating a Chain.. 177
20.2 Changing the Chain Style .. 179
20.3 Spread Inside Chain Style... 180
20.4 Packed Chain Style .. 180
20.5 Packed Chain Style with Bias ... 180
20.6 Weighted Chain ... 180
20.7 Working with Ratios ... 181
20.8 Summary .. 183

21. An Android Studio Layout Editor ConstraintLayout Tutorial ... 185
21.1 An Android Studio Layout Editor Tool Example ... 185
21.2 Preparing the Layout Editor Environment .. 185
21.3 Adding the Widgets to the User Interface.. 186
21.4 Adding the Constraints .. 189
21.5 Testing the Layout ... 191
21.6 Using the Layout Inspector .. 191
21.7 Summary .. 192

22. Manual XML Layout Design in Android Studio ... 193
22.1 Manually Creating an XML Layout .. 193
22.2 Manual XML vs. Visual Layout Design .. 196
22.3 Summary .. 196

23. Managing Constraints using Constraint Sets .. 197
23.1 Java Code vs. XML Layout Files .. 197
23.2 Creating Views ... 197
23.3 View Attributes .. 198
23.4 Constraint Sets ... 198

23.4.1 Establishing Connections.. 198
23.4.2 Applying Constraints to a Layout .. 198
23.4.3 Parent Constraint Connections .. 198
23.4.4 Sizing Constraints .. 199
23.4.5 Constraint Bias ... 199
23.4.6 Alignment Constraints .. 199
23.4.7 Copying and Applying Constraint Sets ... 199
23.4.8 ConstraintLayout Chains .. 199
23.4.9 Guidelines ... 200
23.4.10 Removing Constraints ... 200
23.4.11 Scaling.. 200
23.4.12 Rotation ... 201

23.5 Summary .. 201

vii

Table of Contents

24. An Android ConstraintSet Tutorial ... 203
24.1 Creating the Example Project in Android Studio ... 203
24.2 Adding Views to an Activity .. 203
24.3 Setting View Attributes ... 204
24.4 Creating View IDs ... 205
24.5 Configuring the Constraint Set ... 206
24.6 Adding the EditText View .. 207
24.7 Converting Density Independent Pixels (dp) to Pixels (px) .. 208
24.8 Summary .. 209

25. A Guide to Using Apply Changes in Android Studio .. 211
25.1 Introducing Apply Changes ... 211
25.2 Understanding Apply Changes Options .. 211
25.3 Using Apply Changes .. 212
25.4 Configuring Apply Changes Fallback Settings .. 213
25.5 An Apply Changes Tutorial.. 213
25.6 Using Apply Code Changes ... 213
25.7 Using Apply Changes and Restart Activity .. 214
25.8 Using Run App .. 214
25.9 Summary .. 214

26. An Overview and Example of Android Event Handling ... 215
26.1 Understanding Android Events... 215
26.2 Using the android:onClick Resource .. 215
26.3 Event Listeners and Callback Methods .. 216
26.4 An Event Handling Example ... 216
26.5 Designing the User Interface ... 217
26.6 The Event Listener and Callback Method .. 217
26.7 Consuming Events .. 219
26.8 Summary .. 220

27. Android Touch and Multi-touch Event Handling ... 221
27.1 Intercepting Touch Events ... 221
27.2 The MotionEvent Object .. 221
27.3 Understanding Touch Actions ... 222
27.4 Handling Multiple Touches ... 222
27.5 An Example Multi-Touch Application ... 222
27.6 Designing the Activity User Interface .. 223
27.7 Implementing the Touch Event Listener .. 223
27.8 Running the Example Application .. 226
27.9 Summary .. 227

28. Detecting Common Gestures Using the Android Gesture Detector Class ... 229
28.1 Implementing Common Gesture Detection .. 229
28.2 Creating an Example Gesture Detection Project .. 230
28.3 Implementing the Listener Class ... 230
28.4 Creating the GestureDetectorCompat Instance .. 232
28.5 Implementing the onTouchEvent() Method .. 233
28.6 Testing the Application ... 233
28.7 Summary .. 234

viii

Table of Contents

29. Implementing Custom Gesture and Pinch Recognition on Android ... 235
29.1 The Android Gesture Builder Application ... 235
29.2 The GestureOverlayView Class ... 235
29.3 Detecting Gestures .. 235
29.4 Identifying Specific Gestures ... 235
29.5 Installing and Running the Gesture Builder Application .. 235
29.6 Creating a Gestures File ... 236
29.7 Creating the Example Project .. 236
29.8 Extracting the Gestures File from the SD Card .. 236
29.9 Adding the Gestures File to the Project ... 237
29.10 Designing the User Interface ... 237
29.11 Loading the Gestures File .. 238
29.12 Registering the Event Listener ... 239
29.13 Implementing the onGesturePerformed Method ... 239
29.14 Testing the Application... 240
29.15 Configuring the GestureOverlayView .. 240
29.16 Intercepting Gestures.. 241
29.17 Detecting Pinch Gestures ... 241
29.18 A Pinch Gesture Example Project ... 241
29.19 Summary .. 244

30. An Introduction to Android Fragments .. 245
30.1 What is a Fragment? ... 245
30.2 Creating a Fragment ... 245
30.3 Adding a Fragment to an Activity using the Layout XML File ... 246
30.4 Adding and Managing Fragments in Code ... 248
30.5 Handling Fragment Events .. 249
30.6 Implementing Fragment Communication... 250
30.7 Summary ... 251

31. Using Fragments in Android Studio - An Example ... 253
31.1 About the Example Fragment Application .. 253
31.2 Creating the Example Project .. 253
31.3 Creating the First Fragment Layout .. 253
31.4 Migrating a Fragment to View Binding ... 255
31.5 Adding the Second Fragment .. 256
31.6 Adding the Fragments to the Activity .. 257
31.7 Making the Toolbar Fragment Talk to the Activity .. 258
31.8 Making the Activity Talk to the Text Fragment .. 261
31.9 Testing the Application ... 262
31.10 Summary .. 263

32. Modern Android App Architecture with Jetpack .. 265
32.1 What is Android Jetpack? .. 265
32.2 The “Old” Architecture ... 265
32.3 Modern Android Architecture .. 265
32.4 The ViewModel Component ... 266
32.5 The LiveData Component .. 266
32.6 ViewModel Saved State... 267
32.7 LiveData and Data Binding .. 267

ix

Table of Contents

32.8 Android Lifecycles .. 268
32.9 Repository Modules .. 268
32.10 Summary .. 269

33. An Android ViewModel Tutorial ... 271
33.1 About the Project .. 271
33.2 Creating the ViewModel Example Project ... 271
33.3 Removing Unwanted Project Elements .. 271
33.4 Designing the Fragment Layout .. 272
33.5 Implementing the View Model .. 273
33.6 Associating the Fragment with the View Model ... 274
33.7 Modifying the Fragment .. 275
33.8 Accessing the ViewModel Data ... 276
33.9 Testing the Project ... 276
33.10 Summary .. 277

34. An Android Jetpack LiveData Tutorial .. 279
34.1 LiveData - A Recap ... 279
34.2 Adding LiveData to the ViewModel ... 279
34.3 Implementing the Observer ... 281
34.4 Summary .. 283

35. An Overview of Android Jetpack Data Binding .. 285
35.1 An Overview of Data Binding ... 285
35.2 The Key Components of Data Binding .. 285

35.2.1 The Project Build Configuration .. 285
35.2.2 The Data Binding Layout File ... 286
35.2.3 The Layout File Data Element .. 287
35.2.4 The Binding Classes ... 288
35.2.5 Data Binding Variable Configuration .. 288
35.2.6 Binding Expressions (One-Way) .. 289
35.2.7 Binding Expressions (Two-Way) .. 290
35.2.8 Event and Listener Bindings ... 290

35.3 Summary .. 291
36. An Android Jetpack Data Binding Tutorial ... 293

36.1 Removing the Redundant Code .. 293
36.2 Enabling Data Binding ... 294
36.3 Adding the Layout Element ... 295
36.4 Adding the Data Element to Layout File .. 296
36.5 Working with the Binding Class ... 297
36.6 Assigning the ViewModel Instance to the Data Binding Variable ... 298
36.7 Adding Binding Expressions ... 298
36.8 Adding the Conversion Method ... 299
36.9 Adding a Listener Binding ... 299
36.10 Testing the App .. 300
36.11 Summary .. 300

37. An Android ViewModel Saved State Tutorial .. 301
37.1 Understanding ViewModel State Saving .. 301
37.2 Implementing ViewModel State Saving ... 301

x

Table of Contents

37.3 Saving and Restoring State ... 303
37.4 Adding Saved State Support to the ViewModelDemo Project .. 303
37.5 Summary .. 305

38. Working with Android Lifecycle-Aware Components .. 307
38.1 Lifecycle Awareness .. 307
38.2 Lifecycle Owners ... 307
38.3 Lifecycle Observers ... 308
38.4 Lifecycle States and Events ... 309
38.5 Summary .. 310

39. An Android Jetpack Lifecycle Awareness Tutorial .. 311
39.1 Creating the Example Lifecycle Project .. 311
39.2 Creating a Lifecycle Observer .. 311
39.3 Adding the Observer .. 313
39.4 Testing the Observer ... 313
39.5 Creating a Lifecycle Owner .. 313
39.6 Testing the Custom Lifecycle Owner .. 315
39.7 Summary .. 316

40. An Overview of the Navigation Architecture Component .. 317
40.1 Understanding Navigation ... 317
40.2 Declaring a Navigation Host .. 318
40.3 The Navigation Graph .. 320
40.4 Accessing the Navigation Controller .. 321
40.5 Triggering a Navigation Action ... 321
40.6 Passing Arguments .. 322
40.7 Summary .. 322

41. An Android Jetpack Navigation Component Tutorial .. 323
41.1 Creating the NavigationDemo Project ... 323
41.2 Adding Navigation to the Build Configuration... 323
41.3 Creating the Navigation Graph Resource File ... 324
41.4 Declaring a Navigation Host .. 325
41.5 Adding Navigation Destinations ... 326
41.6 Designing the Destination Fragment Layouts ... 328
41.7 Adding an Action to the Navigation Graph... 329
41.8 Implement the OnFragmentInteractionListener .. 331
41.9 Adding View Binding Support to the Destination Fragments .. 332
41.10 Triggering the Action ... 332
41.11 Passing Data Using Safeargs .. 333
41.12 Summary .. 336

42. An Introduction to MotionLayout ... 337
42.1 An Overview of MotionLayout ... 337
42.2 MotionLayout .. 337
42.3 MotionScene .. 337
42.4 Configuring ConstraintSets ... 338
42.5 Custom Attributes ... 339
42.6 Triggering an Animation .. 341
42.7 Arc Motion ... 342

xi

Table of Contents

42.8 Keyframes ... 342
42.8.1 Attribute Keyframes ... 342
42.8.2 Position Keyframes .. 343

42.9 Time Linearity ... 346
42.10 KeyTrigger .. 346
42.11 Cycle and Time Cycle Keyframes ... 347
42.12 Starting an Animation from Code .. 347

43. An Android MotionLayout Editor Tutorial ... 349
43.1 Creating the MotionLayoutDemo Project ... 349
43.2 ConstraintLayout to MotionLayout Conversion .. 349
43.3 Configuring Start and End Constraints ... 351
43.4 Previewing the MotionLayout Animation ... 354
43.5 Adding an OnClick Gesture .. 354
43.6 Adding an Attribute Keyframe to the Transition .. 356
43.7 Adding a CustomAttribute to a Transition .. 358
43.8 Adding Position Keyframes ... 360
43.9 Summary .. 362

44. A MotionLayout KeyCycle Tutorial ... 363
44.1 An Overview of Cycle Keyframes ... 363
44.2 Using the Cycle Editor .. 367
44.3 Creating the KeyCycleDemo Project .. 368
44.4 Configuring the Start and End Constraints ... 368
44.5 Creating the Cycles ... 370
44.6 Previewing the Animation ... 372
44.7 Adding the KeyFrameSet to the MotionScene .. 372
44.8 Summary .. 374

45. Working with the Floating Action Button and Snackbar .. 375
45.1 The Material Design .. 375
45.2 The Design Library ... 375
45.3 The Floating Action Button (FAB) ... 375
45.4 The Snackbar .. 376
45.5 Creating the Example Project .. 377
45.6 Reviewing the Project ... 377
45.7 Removing Navigation Features.. 378
45.8 Changing the Floating Action Button .. 378
45.9 Adding an Action to the Snackbar .. 380
45.10 Summary .. 380

46. Creating a Tabbed Interface using the TabLayout Component .. 383
46.1 An Introduction to the ViewPager2 ... 383
46.2 An Overview of the TabLayout Component ... 383
46.3 Creating the TabLayoutDemo Project .. 384
46.4 Creating the First Fragment ... 385
46.5 Duplicating the Fragments... 386
46.6 Adding the TabLayout and ViewPager2 ... 387
46.7 Creating the Pager Adapter .. 388
46.8 Performing the Initialization Tasks ... 389
46.9 Testing the Application ... 391

xii

Table of Contents

46.10 Customizing the TabLayout ... 392
46.11 Summary .. 393

47. Working with the RecyclerView and CardView Widgets .. 395
47.1 An Overview of the RecyclerView .. 395
47.2 An Overview of the CardView .. 397
47.3 Summary .. 398

48. An Android RecyclerView and CardView Tutorial ... 399
48.1 Creating the CardDemo Project.. 399
48.2 Modifying the Basic Views Activity Project .. 399
48.3 Designing the CardView Layout ... 400
48.4 Adding the RecyclerView ... 401
48.5 Adding the Image Files ... 401
48.6 Creating the RecyclerView Adapter .. 402
48.7 Initializing the RecyclerView Component ... 404
48.8 Testing the Application ... 405
48.9 Responding to Card Selections.. 406
48.10 Summary .. 407

49. A Layout Editor Sample Data Tutorial .. 409
49.1 Adding Sample Data to a Project .. 409
49.2 Using Custom Sample Data ... 413
49.3 Summary .. 416

50. Working with the AppBar and Collapsing Toolbar Layouts ... 417
50.1 The Anatomy of an AppBar ... 417
50.2 The Example Project ... 418
50.3 Coordinating the RecyclerView and Toolbar .. 418
50.4 Introducing the Collapsing Toolbar Layout .. 420
50.5 Changing the Title and Scrim Color .. 423
50.6 Summary .. 424

51. An Android Studio Primary/Detail Flow Tutorial .. 425
51.1 The Primary/Detail Flow .. 425
51.2 Creating a Primary/Detail Flow Activity ... 426
51.3 Adding the Primary/Detail Flow Activity .. 426
51.4 Modifying the Primary/Detail Flow Template .. 427
51.5 Changing the Content Model .. 427
51.6 Changing the Detail Pane .. 429
51.7 Modifying the ItemDetailFragment Class ... 430
51.8 Modifying the ItemListFragment Class .. 431
51.9 Adding Manifest Permissions .. 432
51.10 Running the Application .. 432
51.11 Summary .. 433

52. An Overview of Android Services .. 435
52.1 Intent Service ... 435
52.2 Bound Service .. 435
52.3 The Anatomy of a Service .. 436
52.4 Controlling Destroyed Service Restart Options.. 436
52.5 Declaring a Service in the Manifest File ... 436

xiii

Table of Contents

52.6 Starting a Service Running on System Startup .. 437
52.7 Summary .. 438

53. An Overview of Android Intents ... 439
53.1 An Overview of Intents .. 439
53.2 Explicit Intents ... 439
53.3 Returning Data from an Activity .. 440
53.4 Implicit Intents .. 441
53.5 Using Intent Filters .. 442
53.6 Automatic Link Verification .. 442
53.7 Manually Enabling Links ... 445
53.8 Checking Intent Availability .. 446
53.9 Summary .. 447

54. Android Explicit Intents – A Worked Example ... 449
54.1 Creating the Explicit Intent Example Application .. 449
54.2 Designing the User Interface Layout for MainActivity .. 449
54.3 Creating the Second Activity Class ... 450
54.4 Designing the User Interface Layout for SecondActivity .. 451
54.5 Reviewing the Application Manifest File ... 451
54.6 Creating the Intent .. 452
54.7 Extracting Intent Data .. 453
54.8 Launching SecondActivity as a Sub-Activity ... 454
54.9 Returning Data from a Sub-Activity... 455
54.10 Testing the Application... 455
54.11 Summary .. 455

55. Android Implicit Intents – A Worked Example .. 457
55.1 Creating the Android Studio Implicit Intent Example Project ... 457
55.2 Designing the User Interface ... 457
55.3 Creating the Implicit Intent ... 458
55.4 Adding a Second Matching Activity ... 459
55.5 Adding the Web View to the UI .. 459
55.6 Obtaining the Intent URL .. 460
55.7 Modifying the MyWebView Project Manifest File ... 461
55.8 Installing the MyWebView Package on a Device .. 462
55.9 Testing the Application ... 463
55.10 Manually Enabling the Link .. 463
55.11 Automatic Link Verification .. 465
55.12 Summary .. 467

56. Android Broadcast Intents and Broadcast Receivers .. 469
56.1 An Overview of Broadcast Intents .. 469
56.2 An Overview of Broadcast Receivers ... 470
56.3 Obtaining Results from a Broadcast ... 471
56.4 Sticky Broadcast Intents ... 471
56.5 The Broadcast Intent Example ... 472
56.6 Creating the Example Application .. 472
56.7 Creating and Sending the Broadcast Intent ... 472
56.8 Creating the Broadcast Receiver ... 473
56.9 Registering the Broadcast Receiver ... 474

xiv

Table of Contents

56.10 Testing the Broadcast Example ... 475
56.11 Listening for System Broadcasts .. 475
56.12 Summary .. 476

57. Android Local Bound Services – A Worked Example ... 477
57.1 Understanding Bound Services ... 477
57.2 Bound Service Interaction Options .. 477
57.3 A Local Bound Service Example ... 477
57.4 Adding a Bound Service to the Project .. 478
57.5 Implementing the Binder ... 478
57.6 Binding the Client to the Service .. 481
57.7 Completing the Example .. 482
57.8 Testing the Application ... 483
57.9 Summary .. 483

58. Android Remote Bound Services – A Worked Example ... 485
58.1 Client to Remote Service Communication .. 485
58.2 Creating the Example Application .. 485
58.3 Designing the User Interface ... 485
58.4 Implementing the Remote Bound Service ... 485
58.5 Configuring a Remote Service in the Manifest File .. 487
58.6 Launching and Binding to the Remote Service ... 488
58.7 Sending a Message to the Remote Service ... 489
58.8 Summary .. 490

59. A Basic Overview of Java Threads, Handlers and Executors ... 491
59.1 The Application Main Thread .. 491
59.2 Thread Handlers .. 491
59.3 A Threading Example ... 491
59.4 Building the App ... 492
59.5 Creating a New Thread ... 493
59.6 Implementing a Thread Handler ... 494
59.7 Passing a Message to the Handler ... 496
59.8 Java Executor Concurrency ... 496
59.9 Working with Runnable Tasks ... 497
59.10 Shutting down an Executor Service .. 498
59.11 Working with Callable Tasks and Futures ... 498
59.12 Handling a Future Result ... 500
59.13 Scheduling Tasks ... 501
59.14 Summary .. 502

60. Making Runtime Permission Requests in Android ... 503
60.1 Understanding Normal and Dangerous Permissions ... 503
60.2 Creating the Permissions Example Project .. 505
60.3 Checking for a Permission ... 505
60.4 Requesting Permission at Runtime ... 507
60.5 Providing a Rationale for the Permission Request ... 508
60.6 Testing the Permissions App .. 510
60.7 Summary .. 510

61. An Android Notifications Tutorial .. 511

xv

Table of Contents

61.1 An Overview of Notifications .. 511
61.2 Creating the NotifyDemo Project ... 513
61.3 Designing the User Interface ... 513
61.4 Creating the Second Activity ... 513
61.5 Creating a Notification Channel ... 514
61.6 Requesting Notification Permission ... 515
61.7 Creating and Issuing a Notification .. 518
61.8 Launching an Activity from a Notification .. 520
61.9 Adding Actions to a Notification .. 522
61.10 Bundled Notifications ... 523
61.11 Summary .. 525

62. An Android Direct Reply Notification Tutorial .. 527
62.1 Creating the DirectReply Project .. 527
62.2 Designing the User Interface ... 527
62.3 Requesting Notification Permission ... 528
62.4 Creating the Notification Channel .. 529
62.5 Building the RemoteInput Object ... 530
62.6 Creating the PendingIntent .. 531
62.7 Creating the Reply Action .. 532
62.8 Receiving Direct Reply Input ... 534
62.9 Updating the Notification .. 535
62.10 Summary .. 537

63. Foldable Devices and Multi-Window Support ... 539
63.1 Foldables and Multi-Window Support ... 539
63.2 Using a Foldable Emulator ... 540
63.3 Entering Multi-Window Mode ... 541
63.4 Enabling and using Freeform Support ... 542
63.5 Checking for Freeform Support .. 542
63.6 Enabling Multi-Window Support in an App ... 542
63.7 Specifying Multi-Window Attributes ... 543
63.8 Detecting Multi-Window Mode in an Activity ... 544
63.9 Receiving Multi-Window Notifications ... 544
63.10 Launching an Activity in Multi-Window Mode ... 545
63.11 Configuring Freeform Activity Size and Position ... 545
63.12 Summary .. 546

64. An Overview of Android SQLite Databases .. 547
64.1 Understanding Database Tables .. 547
64.2 Introducing Database Schema .. 547
64.3 Columns and Data Types .. 547
64.4 Database Rows .. 548
64.5 Introducing Primary Keys ... 548
64.6 What is SQLite? ... 548
64.7 Structured Query Language (SQL) ... 548
64.8 Trying SQLite on an Android Virtual Device (AVD) .. 549
64.9 The Android Room Persistence Library ... 550
64.10 Summary .. 551

65. The Android Room Persistence Library .. 553

xvi

Table of Contents

65.1 Revisiting Modern App Architecture ... 553
65.2 Key Elements of Room Database Persistence .. 553

65.2.1 Repository ... 554
65.2.2 Room Database .. 554
65.2.3 Data Access Object (DAO) ... 554
65.2.4 Entities ... 554
65.2.5 SQLite Database ... 554

65.3 Understanding Entities ... 555
65.4 Data Access Objects .. 558
65.5 The Room Database .. 559
65.6 The Repository ... 560
65.7 In-Memory Databases .. 561
65.8 Database Inspector .. 561
65.9 Summary .. 561

66. An Android TableLayout and TableRow Tutorial ... 563
66.1 The TableLayout and TableRow Layout Views .. 563
66.2 Creating the Room Database Project ... 564
66.3 Converting to a LinearLayout.. 564
66.4 Adding the TableLayout to the User Interface... 565
66.5 Configuring the TableRows ... 566
66.6 Adding the Button Bar to the Layout ... 567
66.7 Adding the RecyclerView ... 568
66.8 Adjusting the Layout Margins ... 569
66.9 Summary .. 569

67. An Android Room Database and Repository Tutorial .. 571
67.1 About the RoomDemo Project .. 571
67.2 Modifying the Build Configuration .. 571
67.3 Building the Entity .. 571
67.4 Creating the Data Access Object ... 573
67.5 Adding the Room Database ... 574
67.6 Adding the Repository ... 575
67.7 Adding the ViewModel .. 578
67.8 Creating the Product Item Layout .. 579
67.9 Adding the RecyclerView Adapter .. 579
67.10 Preparing the Main Activity .. 581
67.11 Adding the Button Listeners .. 582
67.12 Adding LiveData Observers .. 583
67.13 Initializing the RecyclerView ... 584
67.14 Testing the RoomDemo App ... 584
67.15 Using the Database Inspector .. 584
67.16 Summary .. 585

68. Accessing Cloud Storage using the Android Storage Access Framework ... 587
68.1 The Storage Access Framework ... 587
68.2 Working with the Storage Access Framework .. 588
68.3 Filtering Picker File Listings .. 588
68.4 Handling Intent Results .. 589
68.5 Reading the Content of a File .. 589
68.6 Writing Content to a File ... 590

xvii

Table of Contents

68.7 Deleting a File .. 591
68.8 Gaining Persistent Access to a File.. 591
68.9 Summary .. 591

69. An Android Storage Access Framework Example ... 593
69.1 About the Storage Access Framework Example .. 593
69.2 Creating the Storage Access Framework Example .. 593
69.3 Designing the User Interface ... 593
69.4 Adding the Activity Launchers .. 594
69.5 Creating a New Storage File ... 596
69.6 Saving to a Storage File ... 596
69.7 Opening and Reading a Storage File .. 598
69.8 Testing the Storage Access Application .. 599
69.9 Summary .. 600

70. Video Playback on Android using the VideoView and MediaController Classes 601
70.1 Introducing the Android VideoView Class ... 601
70.2 Introducing the Android MediaController Class ... 602
70.3 Creating the Video Playback Example ... 602
70.4 Designing the VideoPlayer Layout ... 602
70.5 Downloading the Video File .. 603
70.6 Configuring the VideoView ... 603
70.7 Adding the MediaController to the Video View ... 605
70.8 Setting up the onPreparedListener ... 606
70.9 Summary .. 606

71. Android Picture-in-Picture Mode .. 607
71.1 Picture-in-Picture Features .. 607
71.2 Enabling Picture-in-Picture Mode .. 608
71.3 Configuring Picture-in-Picture Parameters .. 608
71.4 Entering Picture-in-Picture Mode .. 609
71.5 Detecting Picture-in-Picture Mode Changes .. 609
71.6 Adding Picture-in-Picture Actions ... 610
71.7 Summary .. 610

72. An Android Picture-in-Picture Tutorial .. 613
72.1 Adding Picture-in-Picture Support to the Manifest ... 613
72.2 Adding a Picture-in-Picture Button ... 613
72.3 Entering Picture-in-Picture Mode .. 614
72.4 Detecting Picture-in-Picture Mode Changes .. 615
72.5 Adding a Broadcast Receiver ... 615
72.6 Adding the PiP Action .. 616
72.7 Testing the Picture-in-Picture Action .. 619
72.8 Summary .. 620

73. Android Audio Recording and Playback using MediaPlayer and MediaRecorder 621
73.1 Playing Audio .. 621
73.2 Recording Audio and Video using the MediaRecorder Class ... 622
73.3 About the Example Project .. 623
73.4 Creating the AudioApp Project ... 623
73.5 Designing the User Interface ... 623

xviii

Table of Contents

73.6 Checking for Microphone Availability ... 624
73.7 Initializing the Activity ... 625
73.8 Implementing the recordAudio() Method ... 626
73.9 Implementing the stopAudio() Method ... 626
73.10 Implementing the playAudio() method ... 627
73.11 Configuring and Requesting Permissions ... 627
73.12 Testing the Application... 629
73.13 Summary .. 630

74. Working with the Google Maps Android API in Android Studio .. 631
74.1 The Elements of the Google Maps Android API .. 631
74.2 Creating the Google Maps Project .. 632
74.3 Creating a Google Cloud Billing Account ... 632
74.4 Creating a New Google Cloud Project ... 633
74.5 Enabling the Google Maps SDK .. 634
74.6 Generating a Google Maps API Key ... 635
74.7 Adding the API Key to the Android Studio Project ... 636
74.8 Testing the Application ... 636
74.9 Understanding Geocoding and Reverse Geocoding .. 636
74.10 Adding a Map to an Application ... 638
74.11 Requesting Current Location Permission .. 638
74.12 Displaying the User’s Current Location ... 640
74.13 Changing the Map Type ... 641
74.14 Displaying Map Controls to the User ... 642
74.15 Handling Map Gesture Interaction ... 643

74.15.1 Map Zooming Gestures ... 643
74.15.2 Map Scrolling/Panning Gestures ... 643
74.15.3 Map Tilt Gestures ... 643
74.15.4 Map Rotation Gestures .. 643

74.16 Creating Map Markers .. 644
74.17 Controlling the Map Camera .. 645
74.18 Summary .. 646

75. Printing with the Android Printing Framework ... 647
75.1 The Android Printing Architecture .. 647
75.2 The Print Service Plugins ... 647
75.3 Google Cloud Print ... 648
75.4 Printing to Google Drive .. 648
75.5 Save as PDF .. 649
75.6 Printing from Android Devices .. 649
75.7 Options for Building Print Support into Android Apps .. 650

75.7.1 Image Printing .. 650
75.7.2 Creating and Printing HTML Content ... 651
75.7.3 Printing a Web Page ... 652
75.7.4 Printing a Custom Document .. 653

75.8 Summary .. 653
76. An Android HTML and Web Content Printing Example ... 655

76.1 Creating the HTML Printing Example Application ... 655
76.2 Printing Dynamic HTML Content ... 655
76.3 Creating the Web Page Printing Example .. 658

xix

Table of Contents

76.4 Removing the Floating Action Button ... 658
76.5 Removing Navigation Features.. 658
76.6 Designing the User Interface Layout .. 660
76.7 Accessing the WebView from the Main Activity .. 660
76.8 Loading the Web Page into the WebView .. 661
76.9 Adding the Print Menu Option ... 662
76.10 Summary .. 664

77. A Guide to Android Custom Document Printing ... 665
77.1 An Overview of Android Custom Document Printing ... 665

77.1.1 Custom Print Adapters .. 665
77.2 Preparing the Custom Document Printing Project .. 666
77.3 Creating the Custom Print Adapter .. 667
77.4 Implementing the onLayout() Callback Method .. 668
77.5 Implementing the onWrite() Callback Method .. 671
77.6 Checking a Page is in Range .. 673
77.7 Drawing the Content on the Page Canvas ... 674
77.8 Starting the Print Job .. 676
77.9 Testing the Application ... 677
77.10 Summary .. 677

78. An Introduction to Android App Links ... 679
78.1 An Overview of Android App Links .. 679
78.2 App Link Intent Filters ... 679
78.3 Handling App Link Intents .. 680
78.4 Associating the App with a Website.. 680
78.5 Summary .. 681

79. An Android Studio App Links Tutorial ... 683
79.1 About the Example App ... 683
79.2 The Database Schema ... 683
79.3 Loading and Running the Project ... 683
79.4 Adding the URL Mapping .. 685
79.5 Adding the Intent Filter .. 688
79.6 Adding Intent Handling Code ... 689
79.7 Testing the App .. 691
79.8 Creating the Digital Asset Links File .. 691
79.9 Testing the App Link ... 692
79.10 Summary .. 692

80. An Android Biometric Authentication Tutorial.. 693
80.1 An Overview of Biometric Authentication .. 693
80.2 Creating the Biometric Authentication Project .. 693
80.3 Configuring Device Fingerprint Authentication .. 694
80.4 Adding the Biometric Permission to the Manifest File .. 694
80.5 Designing the User Interface ... 695
80.6 Adding a Toast Convenience Method .. 695
80.7 Checking the Security Settings .. 696
80.8 Configuring the Authentication Callbacks .. 697
80.9 Adding the CancellationSignal .. 698
80.10 Starting the Biometric Prompt .. 698

xx

Table of Contents

80.11 Testing the Project ... 699
80.12 Summary .. 700

81. Creating, Testing, and Uploading an Android App Bundle .. 701
81.1 The Release Preparation Process ... 701
81.2 Android App Bundles ... 701
81.3 Register for a Google Play Developer Console Account .. 702
81.4 Configuring the App in the Console .. 703
81.5 Enabling Google Play App Signing ... 704
81.6 Creating a Keystore File ... 704
81.7 Creating the Android App Bundle .. 705
81.8 Generating Test APK Files ... 707
81.9 Uploading the App Bundle to the Google Play Developer Console 708
81.10 Exploring the App Bundle ... 709
81.11 Managing Testers .. 710
81.12 Rolling the App Out for Testing .. 710
81.13 Uploading New App Bundle Revisions .. 711
81.14 Analyzing the App Bundle File ... 712
81.15 Summary .. 713

82. An Overview of Android In-App Billing ... 715
82.1 Preparing a Project for In-App Purchasing ... 715
82.2 Creating In-App Products and Subscriptions ... 715
82.3 Billing Client Initialization... 716
82.4 Connecting to the Google Play Billing Library ... 717
82.5 Querying Available Products ... 718
82.6 Starting the Purchase Process .. 718
82.7 Completing the Purchase ... 719
82.8 Querying Previous Purchases .. 720
82.9 Summary .. 721

83. An Android In-App Purchasing Tutorial .. 723
83.1 About the In-App Purchasing Example Project .. 723
83.2 Creating the InAppPurchase Project .. 723
83.3 Adding Libraries to the Project ... 723
83.4 Designing the User Interface ... 724
83.5 Adding the App to the Google Play Store .. 724
83.6 Creating an In-App Product .. 725
83.7 Enabling License Testers .. 725
83.8 Initializing the Billing Client ... 726
83.9 Querying the Product ... 728
83.10 Launching the Purchase Flow ... 729
83.11 Handling Purchase Updates .. 729
83.12 Consuming the Product ... 730
83.13 Restoring a Previous Purchase .. 731
83.14 Testing the App .. 732
83.15 Troubleshooting .. 733
83.16 Summary .. 734

84. Working with Material Design 3 Theming .. 735
84.1 Material Design 2 vs. Material Design 3 .. 735

xxi

Table of Contents

84.2 Understanding Material Design Theming ... 735
84.3 Material Design 3 Theming ... 735
84.4 Building a Custom Theme.. 737
84.5 Summary .. 738

85. A Material Design 3 Theming and Dynamic Color Tutorial ... 739
85.1 Creating the ThemeDemo Project .. 739
85.3 Designing the User Interface ... 739
85.4 Building a New Theme ... 741
85.5 Adding the Theme to the Project .. 742
85.6 Enabling Dynamic Color Support .. 743
85.7 Previewing Dynamic Colors .. 744
85.8 Summary .. 745

86. An Overview of Gradle in Android Studio .. 747
86.1 An Overview of Gradle .. 747
86.2 Gradle and Android Studio ... 747

86.2.1 Sensible Defaults .. 747
86.2.2 Dependencies.. 747
86.2.3 Build Variants ... 748
86.2.4 Manifest Entries ... 748
86.2.5 APK Signing .. 748
86.2.6 ProGuard Support .. 748

86.3 The Property and Settings Gradle Build File ... 748
86.4 The Top-level Gradle Build File ... 749
86.5 Module Level Gradle Build Files ... 750
86.6 Configuring Signing Settings in the Build File .. 752
86.7 Running Gradle Tasks from the Command Line ... 753
86.8 Summary .. 754

Index ... 755

1

Chapter 1

1. Introduction
Fully updated for Android Studio Giraffe and the new UI, this book aims to teach you how to develop Android-
based applications using the Java programming language.

This book begins with the basics and outlines how to set up an Android development and testing environment,
followed by an overview of areas such as tool windows, the code editor, and the Layout Editor tool. An
introduction to the architecture of Android is followed by an in-depth look at the design of Android applications
and user interfaces using the Android Studio environment.

Chapters are also included covering the Android Architecture Components, including view models, lifecycle
management, Room database access, the Database Inspector, app navigation, live data, and data binding.

More advanced topics such as intents are also covered, as are touch screen handling, gesture recognition, and the
recording and playback of audio. This book edition also covers printing, transitions, and foldable device support.

The concepts of material design are also covered in detail, including the use of floating action buttons, Snackbars,
tabbed interfaces, card views, navigation drawers, and collapsing toolbars.

Other key features of Android Studio and Android are also covered in detail, including the Layout Editor, the
ConstraintLayout and ConstraintSet classes, MotionLayout Editor, view binding, constraint chains, barriers,
and direct reply notifications.

Chapters also cover advanced features of Android Studio, such as App Links, Gradle build configuration, in-app
billing, and submitting apps to the Google Play Developer Console.

Assuming you already have some Java programming experience, are ready to download Android Studio and the
Android SDK, have access to a Windows, Mac, or Linux system, and have ideas for some apps to develop, you
are ready to get started.

1.1 Downloading the Code Samples
The source code and Android Studio project files for the examples contained in this book are available for
download at:

https://www.ebookfrenzy.com/retail/giraffejava/index.php

The steps to load a project from the code samples into Android Studio are as follows:

1. From the Welcome to Android Studio dialog, click on the Open button option.

2. In the project selection dialog, navigate to and select the folder containing the project to be imported and
click on OK.

1.2 Feedback
We want you to be satisfied with your purchase of this book. If you find any errors in the book, or have any
comments, questions or concerns please contact us at feedback@ebookfrenzy.com.

https://www.ebookfrenzy.com/retail/giraffejava/index.php
mailto:feedback%40ebookfrenzy.com?subject=

2

Introduction

1.3 Errata
While we make every effort to ensure the accuracy of the content of this book, it is inevitable that a book
covering a subject area of this size and complexity may include some errors and oversights. Any known issues
with the book will be outlined, together with solutions, at the following URL:

https://www.ebookfrenzy.com/errata/giraffejava.html

If you find an error not listed in the errata, please let us know by emailing our technical support team at feedback@
ebookfrenzy.com. They are there to help you and will work to resolve any problems you may encounter.

https://www.ebookfrenzy.com/errata/giraffejava.html
mailto:feedback%40ebookfrenzy.com?subject=
mailto:feedback%40ebookfrenzy.com?subject=

3

Chapter 2

2. Setting up an Android Studio
Development Environment
Before any work can begin on developing an Android application, the first step is to configure a computer
system to act as the development platform. This involves several steps consisting of installing the Android Studio
Integrated Development Environment (IDE), including the Android Software Development Kit (SDK) and the
OpenJDK Java development environment.

This chapter will cover the steps necessary to install the requisite components for Android application
development on Windows, macOS, and Linux-based systems.

2.1 System requirements
Android application development may be performed on any of the following system types:

• Windows 8/10/11 64-bit

• macOS 10.14 or later running on Intel or Apple silicon

• Chrome OS device with Intel i5 or higher

• Linux systems with version 2.31 or later of the GNU C Library (glibc)

• Minimum of 8GB of RAM

• Approximately 8GB of available disk space

• 1280 x 800 minimum screen resolution

2.2 Downloading the Android Studio package
Most of the work involved in developing applications for Android will be performed using the Android Studio
environment. The content and examples in this book were created based on Android Studio Giraffe 2022.3.1
using the Android API 33 SDK (Tiramisu), which, at the time of writing, are the latest stable releases.

Android Studio is, however, subject to frequent updates, so a newer version may have been released since this
book was published.

The latest release of Android Studio may be downloaded from the primary download page, which can be found
at the following URL:

https://developer.android.com/studio/index.html

If this page provides instructions for downloading a newer version of Android Studio, there may be differences
between this book and the software. A web search for “Android Studio Giraffe” should provide the option to
download the older version if these differences become a problem. Alternatively, visit the following web page to
find Android Studio Giraffe 2022.3.1 in the archives:

https://developer.android.com/studio/archive

https://developer.android.com/studio/index.html
https://developer.android.com/studio/archive

4

Setting up an Android Studio Development Environment

2.3 Installing Android Studio
Once downloaded, the exact steps to install Android Studio differ depending on the operating system on which
the installation is performed.

2.3.1 Installation on Windows
Locate the downloaded Android Studio installation executable file (named android-studio-<version>-windows.
exe) in a Windows Explorer window and double-click on it to start the installation process, clicking the Yes
button in the User Account Control dialog if it appears.

Once the Android Studio setup wizard appears, work through the various screens to configure the installation to
meet your requirements in terms of the file system location into which Android Studio should be installed and
whether or not it should be made available to other system users. When prompted to select the components to
install, ensure that the Android Studio and Android Virtual Device options are all selected.

Although there are no strict rules on where Android Studio should be installed on the system, the remainder
of this book will assume that the installation was performed into C:\Program Files\Android\Android Studio and
that the Android SDK packages have been installed into the user’s AppData\Local\Android\sdk sub-folder. Once
the options have been configured, click the Install button to begin the installation process.

On versions of Windows with a Start menu, the newly installed Android Studio can be launched from the entry
added to that menu during the installation. The executable may be pinned to the taskbar for easy access by
navigating to the Android Studio\bin directory, right-clicking on the studio64 executable, and selecting the Pin to
Taskbar menu option (on Windows 11, this option can be found by selecting Show more options from the menu).

2.3.2 Installation on macOS
Android Studio for macOS is downloaded as a disk image (.dmg) file. Once the android-studio-<version>-mac.
dmg file has been downloaded, locate it in a Finder window and double-click on it to open it, as shown in Figure
2-1:

Figure 2-1
To install the package, drag the Android Studio icon and drop it onto the Applications folder. The Android
Studio package will then be installed into the Applications folder of the system, a process that will typically take
a few seconds to complete.

To launch Android Studio, locate the executable in the Applications folder using a Finder window and double-
click on it.

For future, easier access to the tool, drag the Android Studio icon from the Finder window and drop it onto the
dock.

5

Setting up an Android Studio Development Environment

2.3.3 Installation on Linux
Having downloaded the Linux Android Studio package, open a terminal window, change directory to the
location where Android Studio is to be installed, and execute the following command:
tar xvfz /<path to package>/android-studio-<version>-linux.tar.gz

Note that the Android Studio bundle will be installed into a subdirectory named android-studio. Therefore,
assuming that the above command was executed in /home/demo, the software packages will be unpacked into /
home/demo/android-studio.

To launch Android Studio, open a terminal window, change directory to the android-studio/bin sub-directory,
and execute the following command:
./studio.sh

2.4 The Android Studio setup wizard
If you have previously installed an earlier version of Android Studio, the first time this new version is launched,
a dialog may appear providing the option to import settings from a previous Android Studio version. If you have
settings from a previous version and would like to import them into the latest installation, select the appropriate
option and location. Alternatively, indicate that you do not need to import any previous settings and click the
OK button to proceed.

If you are installing Android Studio for the first time, the initial dialog that appears once the setup process starts
may resemble that shown in Figure 2-2 below:

Figure 2-2
If this dialog appears, click the Next button to display the Install Type screen (Figure 2-3). On this screen, select
the Standard installation option before clicking Next.

6

Setting up an Android Studio Development Environment

Figure 2-3
On the Select UI Theme screen, select either the Darcula or Light theme based on your preferences. After
making a choice, click Next, and review the options in the Verify Settings screen before proceeding to the
License Agreement screen. Select each license category and enable the Accept checkbox. Finally, click the Finish
button to initiate the installation.

After these initial setup steps have been taken, click the Finish button to display the Welcome to Android Studio
screen using your chosen UI theme:

Figure 2-4

2.5 Installing additional Android SDK packages
The steps performed so far have installed the Android Studio IDE and the current set of default Android SDK
packages. Before proceeding, it is worth taking some time to verify which packages are installed and to install
any missing or updated packages.

7

Setting up an Android Studio Development Environment

This task can be performed by clicking on the More Actions link within the welcome dialog and selecting the
SDK Manager option from the drop-down menu. Once invoked, the Android SDK screen of the Settings dialog
will appear as shown in Figure 2-5:

Figure 2-5
Google pairs each release of Android Studio with a maximum supported Application Programming Interface
(API) level of the Android SDK. In the case of Android Studio Giraffe, this is Android Tiramisu (API Level 33).
This information can be confirmed using the following link:

https://developer.android.com/studio/releases#api-level-support

Immediately after installing Android Studio for the first time, it is likely that only the latest supported version
of the Android SDK has been installed. To install older versions of the Android SDK, select the checkboxes
corresponding to the versions and click the Apply button. The rest of this book assumes that the Android
Tiramisu (API Level 33) SDK is installed.

Most of the examples in this book will support older versions of Android as far back as Android 8.0 (Oreo).
This ensures that the apps run on a wide range of Android devices. Within the list of SDK versions, enable
the checkbox next to Android 8.0 (Oreo) and click the Apply button. Click the OK button to install the SDK
in the resulting confirmation dialog. Subsequent dialogs will seek the acceptance of licenses and terms before
performing the installation. Click Finish once the installation is complete.

It is also possible that updates will be listed as being available for the latest SDK. To access detailed information
about the packages that are ready to be updated, enable the Show Package Details option located in the lower
right-hand corner of the screen. This will display information similar to that shown in Figure 2-6:

https://developer.android.com/studio/releases#api-level-support

8

Setting up an Android Studio Development Environment

Figure 2-6
The above figure highlights the availability of an update. To install the updates, enable the checkbox to the left of
the item name and click the Apply button.

In addition to the Android SDK packages, several tools are also installed for building Android applications. To
view the currently installed packages and check for updates, remain within the SDK settings screen and select
the SDK Tools tab as shown in Figure 2-7:

Figure 2-7
Within the Android SDK Tools screen, make sure that the following packages are listed as Installed in the Status
column:

• Android SDK Build-tools

• Android Emulator

• Android SDK Platform-tools

• Google Play Services

• Intel x86 Emulator Accelerator (HAXM installer)*

• Google USB Driver (Windows only)

• Layout Inspector image server for API 31 and 34
*Note that the Intel x86 Emulator Accelerator (HAXM installer) cannot be installed on Apple silicon-based
Macs.

If any of the above packages are listed as Not Installed or requiring an update, select the checkboxes next to those
packages and click the Apply button to initiate the installation process. If the HAXM emulator settings dialog
appears, select the recommended memory allocation:

9

Setting up an Android Studio Development Environment

Figure 2-8
Once the installation is complete, review the package list and ensure that the selected packages are listed as
Installed in the Status column. If any are listed as Not installed, make sure they are selected and click the Apply
button again.

2.6 Installing the Android SDK Command-line Tools
Android Studio includes tools that allow some tasks to be performed from your operating system command
line. To install these tools on your system, open the SDK Manager, select the SDK Tools tab, and locate the
Android SDK Command-line Tools (latest) package as shown in Figure 2-9:

Figure 2-9

If the command-line tools package is not already installed, enable it and click Apply, followed by OK to complete
the installation. When the installation completes, click Finish and close the SDK Manager dialog.

For the operating system on which you are developing to be able to find these tools, it will be necessary to add
them to the system’s PATH environment variable.

10

Setting up an Android Studio Development Environment

Regardless of your operating system, you will need to configure the PATH environment variable to include the
following paths (where <path_to_android_sdk_installation> represents the file system location into which you
installed the Android SDK):
<path_to_android_sdk_installation>/sdk/cmdline-tools/latest/bin

<path_to_android_sdk_installation>/sdk/platform-tools

You can identify the location of the SDK on your system by launching the SDK Manager and referring to the
Android SDK Location: field located at the top of the settings panel, as highlighted in Figure 2-10:

Figure 2-10
Once the location of the SDK has been identified, the steps to add this to the PATH variable are operating system
dependent:

2.6.1 Windows 8.1
1. On the start screen, move the mouse to the bottom right-hand corner of the screen and select Search from

the resulting menu. In the search box, enter Control Panel. When the Control Panel icon appears in the
results area, click on it to launch the tool on the desktop.

2. Within the Control Panel, use the Category menu to change the display to Large Icons. From the list of
icons, select the one labeled System.

3. In the Environment Variables dialog, locate the Path variable in the System variables list, select it, and click
the Edit… button. Using the New button in the edit dialog, add two new entries to the path. For example,
assuming the Android SDK was installed into C:\Users\demo\AppData\Local\Android\Sdk, the following
entries would need to be added:

C:\Users\demo\AppData\Local\Android\Sdk\cmdline-tools\latest\bin

C:\Users\demo\AppData\Local\Android\Sdk\platform-tools

4. Click OK in each dialog box and close the system properties control panel.

Open a command prompt window by pressing Windows + R on the keyboard and entering cmd into the Run
dialog. Within the Command Prompt window, enter:
echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that
the platform-tools value is correct by attempting to run the adb tool as follows:
adb

The tool should output a list of command-line options when executed.

Similarly, check the tools path setting by attempting to run the AVD Manager command-line tool (don’t worry
if the avdmanager tool reports a problem with Java - this will be addressed later):
avdmanager

If a message similar to the following message appears for one or both of the commands, it is most likely that an

11

Setting up an Android Studio Development Environment

incorrect path was appended to the Path environment variable:
'adb' is not recognized as an internal or external command,

operable program or batch file.

2.6.2 Windows 10
Right-click on the Start menu, select Settings from the resulting menu and enter “Edit the system environment
variables” into the Find a setting text field. In the System Properties dialog, click the Environment Variables...
button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.3 Windows 11
Right-click on the Start icon located in the taskbar and select Settings from the resulting menu. When the
Settings dialog appears, scroll down the list of categories and select the “About” option. In the About screen,
select Advanced system settings from the Related links section. When the System Properties window appears,
click the Environment Variables... button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.4 Linux
This configuration can be achieved on Linux by adding a command to the .bashrc file in your home directory
(specifics may differ depending on the particular Linux distribution in use). Assuming that the Android SDK
bundle package was installed into /home/demo/Android/sdk, the export line in the .bashrc file would read as
follows:
export PATH=/home/demo/Android/sdk/platform-tools:/home/demo/Android/sdk/cmdline-
tools/latest/bin:/home/demo/android-studio/bin:$PATH

Note also that the above command adds the android-studio/bin directory to the PATH variable. This will enable
the studio.sh script to be executed regardless of the current directory within a terminal window.

2.6.5 macOS
Several techniques may be employed to modify the $PATH environment variable on macOS. Arguably the
cleanest method is to add a new file in the /etc/paths.d directory containing the paths to be added to $PATH.
Assuming an Android SDK installation location of /Users/demo/Library/Android/sdk, the path may be configured
by creating a new file named android-sdk in the /etc/paths.d directory containing the following lines:
/Users/demo/Library/Android/sdk/cmdline-tools/latest/bin

/Users/demo/Library/Android/sdk/platform-tools

Note that since this is a system directory, it will be necessary to use the sudo command when creating the file.
For example:
sudo vi /etc/paths.d/android-sdk

2.7 Android Studio memory management
Android Studio is a large and complex software application with many background processes. Although
Android Studio has been criticized in the past for providing less than optimal performance, Google has made
significant performance improvements in recent releases and continues to do so with each new version. These
improvements include allowing the user to configure the amount of memory used by both the Android Studio
IDE and the background processes used to build and run apps. This allows the software to take advantage of
systems with larger amounts of RAM.

If you are running Android Studio on a system with sufficient unused RAM to increase these values (this feature
is only available on 64-bit systems with 5GB or more of RAM) and find that Android Studio performance
appears to be degraded, it may be worth experimenting with these memory settings. Android Studio may also
notify you that performance can be increased via a dialog similar to the one shown below:

12

Setting up an Android Studio Development Environment

Figure 2-11
To view and modify the current memory configuration, select the File -> Settings... main menu option (Android
Studio -> Settings... on macOS) and, in the resulting dialog, select Appearance & Behavior followed by the
Memory Settings option listed under System Settings in the left-hand navigation panel, as illustrated in Figure
2-12 below:

Figure 2-12
When changing the memory allocation, be sure not to allocate more memory than necessary or than your
system can spare without slowing down other processes.

The IDE heap size setting adjusts the memory allocated to Android Studio and applies regardless of the
currently loaded project. On the other hand, when a project is built and run from within Android Studio,
several background processes (referred to as daemons) perform the task of compiling and running the app.
When compiling and running large and complex projects, build time could be improved by adjusting the
daemon heap settings. Unlike the IDE heap settings, these daemon settings apply only to the current project and
can only be accessed when a project is open in Android Studio. To display the SDK Manager from within an
open project, select the Tools -> SDK Manager... menu option from the main menu.

2.8 Updating Android Studio and the SDK
From time to time, new versions of Android Studio and the Android SDK are released. New versions of the SDK
are installed using the Android SDK Manager. Android Studio will typically notify you when an update is ready
to be installed.

To manually check for Android Studio updates, use the Help -> Check for Updates... menu option from the
Android Studio main window (Android Studio -> Check for Updates... on macOS).

13

Setting up an Android Studio Development Environment

2.9 Summary
Before beginning the development of Android-based applications, the first step is to set up a suitable development
environment. This consists of the Android SDKs and Android Studio IDE (which also includes the OpenJDK
development environment). This chapter covers the steps necessary to install these packages on Windows,
macOS, and Linux.

15

Chapter 3

3. Creating an Example Android App
in Android Studio
The preceding chapters of this book have covered the steps necessary to configure an environment suitable for
developing Android applications using the Android Studio IDE. Before moving on to slightly more advanced
topics, now is a good time to validate that all required development packages are installed and functioning
correctly. The best way to achieve this goal is to create an Android application and compile and run it. This
chapter will cover creating an Android application project using Android Studio. Once the project has been
created, a later chapter will explore using the Android emulator environment to perform a test run of the
application.

3.1 About the Project
The project created in this chapter takes the form of a rudimentary currency conversion calculator (so simple, in
fact, that it only converts from dollars to euros and does so using an estimated conversion rate). The project will
also use one of the most basic Android Studio project templates. This simplicity allows us to introduce some key
aspects of Android app development without overwhelming the beginner by introducing too many concepts,
such as the recommended app architecture and Android architecture components, at once. When following
the tutorial in this chapter, rest assured that the techniques and code used in this initial example project will be
covered in much greater detail later.

3.2 Creating a New Android Project
The first step in the application development process is to create a new project within the Android Studio
environment. Begin, therefore, by launching Android Studio so that the “Welcome to Android Studio” screen
appears as illustrated in Figure 3-1:

Figure 3-1

16

Creating an Example Android App in Android Studio

Once this window appears, Android Studio is ready for a new project to be created. To create the new project,
click on the New Project option to display the first screen of the New Project wizard.

3.3 Creating an Activity
The next step is to define the type of initial activity to be created for the application. Options are available to
create projects for Phone and Tablet, Wear OS, Television, or Automotive. A range of different activity types is
available when developing Android applications, many of which will be covered extensively in later chapters.
For this example, however, select the Phone and Tablet option from the Templates panel, followed by the option
to create an Empty Views Activity. The Empty Views Activity option creates a template user interface consisting
of a single TextView object.

Figure 3-2
With the Empty Views Activity option selected, click Next to continue with the project configuration.

3.4 Defining the Project and SDK Settings
In the project configuration window (Figure 3-3), set the Name field to AndroidSample. The application name is
the name by which the application will be referenced and identified within Android Studio and is also the name
that would be used if the completed application were to go on sale in the Google Play store.

The Package name uniquely identifies the application within the Android application ecosystem. Although this
can be set to any string that uniquely identifies your app, it is traditionally based on the reversed URL of your
domain name followed by the application’s name. For example, if your domain is www.mycompany.com, and the
application has been named AndroidSample, then the package name might be specified as follows:
com.mycompany.androidsample

If you do not have a domain name, you can enter any other string into the Company Domain field, or you may
use example.com for testing, though this will need to be changed before an application can be published:
com.example.androidsample

The Save location setting will default to a location in the folder named AndroidStudioProjects located in your
home directory and may be changed by clicking on the folder icon to the right of the text field containing the
current path setting.

Set the minimum SDK setting to API 26 (Oreo; Android 8.0). This minimum SDK will be used in most projects
created in this book unless a necessary feature is only available in a more recent version. The objective here is to

17

Creating an Example Android App in Android Studio

build an app using the latest Android SDK while retaining compatibility with devices running older versions of
Android (in this case, as far back as Android 8.0). The text beneath the Minimum SDK setting will outline the
percentage of Android devices currently in use on which the app will run. Click on the Help me choose button
(highlighted in Figure 3-3) to see a full breakdown of the various Android versions still in use:

Figure 3-3
Finally, change the Language menu to Java and select Kotlin DSL (build.gradle.kts) as the build configuration
language before clicking Finish to create the project.

3.5 Enabling the New Android Studio UI
Android Studio is transitioning to a new, modern user interface that is not enabled by default in the Giraffe
version. If your installation of Android Studio resembles Figure 3-4 below, then you will need to enable the new
UI before proceeding:

Figure 3-4
Enable the new UI by selecting the File -> Settings... menu option (Android Studio -> Settings... on macOS) and
selecting the New UI option under Appearance and Behavior in the left-hand panel. From the main panel, turn
on the Enable new UI checkbox before clicking Apply, followed by OK to commit the change:

18

Creating an Example Android App in Android Studio

Figure 3-5
When prompted, restart Android Studio to activate the new user interface.

3.6 Modifying the Example Application
Once Android Studio has restarted, the main window will reappear using the new UI and containing our
AndroidSample project as illustrated in Figure 3-6 below:

Figure 3-6
The newly created project and references to associated files are listed in the Project tool window on the left side
of the main project window. The Project tool window has several modes in which information can be displayed.
By default, this panel should be in Android mode. This setting is controlled by the menu at the top of the panel
as highlighted in Figure 3-7. If the panel is not currently in Android mode, use the menu to switch mode:

19

Creating an Example Android App in Android Studio

Figure 3-7

3.7 Modifying the User Interface
The user interface design for our activity is stored in a file named activity_main.xml which, in turn, is located
under app -> res -> layout in the Project tool window file hierarchy. Once located in the Project tool window,
double-click on the file to load it into the user interface Layout Editor tool, which will appear in the center panel
of the Android Studio main window:

Figure 3-8

20

Creating an Example Android App in Android Studio

In the toolbar across the top of the Layout Editor window is a menu (currently set to Pixel in the above figure)
which is reflected in the visual representation of the device within the Layout Editor panel. A range of other
device options are available by clicking on this menu.

Use the System UI Mode button () to turn Night mode on and off for the device screen layout. To change
the orientation of the device representation between landscape and portrait, use the drop-down menu showing
the icon.

As we can see in the device screen, the content layout already includes a label that displays a “Hello World!”
message. Running down the left-hand side of the panel is a palette containing different categories of user
interface components that may be used to construct a user interface, such as buttons, labels, and text fields.
However, it should be noted that not all user interface components are visible to the user. One such category
consists of layouts. Android supports a variety of layouts that provide different levels of control over how visual
user interface components are positioned and managed on the screen. Though it is difficult to tell from looking
at the visual representation of the user interface, the current design has been created using a ConstraintLayout.
This can be confirmed by reviewing the information in the Component Tree panel, which, by default, is located
in the lower left-hand corner of the Layout Editor panel and is shown in Figure 3-9:

Figure 3-9
As we can see from the component tree hierarchy, the user interface layout consists of a ConstraintLayout parent
and a TextView child object.

Before proceeding, check that the Layout Editor’s Autoconnect mode is enabled. This means that as components
are added to the layout, the Layout Editor will automatically add constraints to ensure the components are
correctly positioned for different screen sizes and device orientations (a topic that will be covered in much greater
detail in future chapters). The Autoconnect button appears in the Layout Editor toolbar and is represented by a
U-shaped icon. When disabled, the icon appears with a diagonal line through it (Figure 3-10). If necessary, re-
enable Autoconnect mode by clicking on this button.

Figure 3-10
The next step in modifying the application is to add some additional components to the layout, the first of which
will be a Button for the user to press to initiate the currency conversion.

The Palette panel consists of two columns, with the left-hand column containing a list of view component
categories. The right-hand column lists the components contained within the currently selected category. In
Figure 3-11, for example, the Button view is currently selected within the Buttons category:

21

Creating an Example Android App in Android Studio

Figure 3-11
Click and drag the Button object from the Buttons list and drop it in the horizontal center of the user interface
design so that it is positioned beneath the existing TextView widget:

Figure 3-12
The next step is to change the text currently displayed by the Button component. The panel located to the right
of the design area is the Attributes panel. This panel displays the attributes assigned to the currently selected
component in the layout. Within this panel, locate the text property in the Common Attributes section and
change the current value from “Button” to “Convert”, as shown in Figure 3-13:

22

Creating an Example Android App in Android Studio

Figure 3-13
The second text property with a wrench next to it allows a text property to be set, which only appears within the
Layout Editor tool but is not shown at runtime. This is useful for testing how a visual component and the layout
will behave with different settings without running the app repeatedly.

Just in case the Autoconnect system failed to set all of the layout connections, click on the Infer Constraints
button (Figure 3-14) to add any missing constraints to the layout:

Figure 3-14
It is important to explain the warning button in the top right-hand corner of the Layout Editor tool, as indicated
in Figure 3-15. This warning indicates potential problems with the layout. For details on any problems, click on
the button:

Figure 3-15
When clicked, the Problems tool window (Figure 3-16) will appear, describing the nature of the problems:

Figure 3-16
This tool window is divided into two panels. The left panel (marked A in the above figure) lists issues detected

23

Creating an Example Android App in Android Studio

within the layout file. In our example, only the following problem is listed:
button <Button>: Hardcoded text

When an item is selected from the list (B), the right-hand panel will update to provide additional detail on the
problem (C). In this case, the explanation reads as follows:
Hardcoded string "Convert", should use @string resource

The tool window also includes a preview editor (D), allowing manual corrections to be made to the layout file.

This I18N message informs us that a potential issue exists concerning the future internationalization of the
project (“I18N” comes from the fact that the word “internationalization” begins with an “I”, ends with an “N”
and has 18 letters in between). The warning reminds us that attributes and values such as text strings should be
stored as resources wherever possible when developing Android applications. Doing so enables changes to the
appearance of the application to be made by modifying resource files instead of changing the application source
code. This can be especially valuable when translating a user interface to a different spoken language. If all of the
text in a user interface is contained in a single resource file, for example, that file can be given to a translator, who
will then perform the translation work and return the translated file for inclusion in the application. This enables
multiple languages to be targeted without the necessity for any source code changes to be made. In this instance,
we are going to create a new resource named convert_string and assign to it the string “Convert”.

Begin by clicking on the Show Quick Fixes button (E) and selecting the Extract string resource option from the
menu, as shown in Figure 3-17:

Figure 3-17
After selecting this option, the Extract Resource panel (Figure 3-18) will appear. Within this panel, change the
resource name field to convert_string and leave the resource value set to Convert before clicking on the OK
button:

Figure 3-18

24

Creating an Example Android App in Android Studio

The next widget to be added is an EditText widget, into which the user will enter the dollar amount to be
converted. From the Palette panel, select the Text category and click and drag a Number (Decimal) component
onto the layout so that it is centered horizontally and positioned above the existing TextView widget. With the
widget selected, use the Attributes tools window to set the hint property to “dollars”. Click on the warning icon
and extract the string to a resource named dollars_hint.

The code written later in this chapter will need to access the dollar value entered by the user into the EditText
field. It will do this by referencing the id assigned to the widget in the user interface layout. The default id
assigned to the widget by Android Studio can be viewed and changed from within the Attributes tool window
when the widget is selected in the layout, as shown in Figure 3-19:

Figure 3-19
Change the id to dollarText and, in the Rename dialog, click on the Refactor button. This ensures that any
references elsewhere within the project to the old id are automatically updated to use the new id:

Figure 3-20
Repeat the steps to set the id of the TextView widget to textView, if necessary.

Add any missing layout constraints by clicking on the Infer Constraints button. At this point, the layout should
resemble that shown in Figure 3-21:

25

Creating an Example Android App in Android Studio

Figure 3-21

3.8 Reviewing the Layout and Resource Files
Before moving on to the next step, we will look at some internal aspects of user interface design and resource
handling. In the previous section, we changed the user interface by modifying the activity_main.xml file using
the Layout Editor tool. In fact, all that the Layout Editor was doing was providing a user-friendly way to edit the
underlying XML content of the file. In practice, there is no reason why you cannot modify the XML directly to
make user interface changes, and, in some instances, this may actually be quicker than using the Layout Editor
tool. In the top right-hand corner of the Layout Editor panel is the View Modes menu button marked A in
Figure 3-22 below:

Figure 3-22
By default, the editor will be in Design mode, whereby just the visual representation of the layout is displayed.

26

Creating an Example Android App in Android Studio

In Code mode, the editor will display the XML for the layout, while in Split mode, both the layout and XML are
displayed, as shown in Figure 3-23:

Figure 3-23
The button to the left of the View Modes button (marked B in Figure 3-22 above) is used to toggle between Code
and Split modes quickly.

As can be seen from the structure of the XML file, the user interface consists of the ConstraintLayout component,
which in turn, is the parent of the TextView, Button, and EditText objects. We can also see, for example, that the
text property of the Button is set to our convert_string resource. Although complexity and content vary, all user
interface layouts are structured in this hierarchical, XML-based way.

As changes are made to the XML layout, these will be reflected in the layout canvas. The layout may also be
modified visually from within the layout canvas panel, with the changes appearing in the XML listing. To
see this in action, switch to Split mode and modify the XML layout to change the background color of the
ConstraintLayout to a shade of red as follows:
<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity"

 android:background="#ff2438" >
.

.

</androidx.constraintlayout.widget.ConstraintLayout>

Note that the layout color changes in real-time to match the new setting in the XML file. Note also that a small
red square appears in the XML editor’s left margin (also called the gutter) next to the line containing the color
setting. This is a visual cue to the fact that the color red has been set on a property. Clicking on the red square
will display a color chooser allowing a different color to be selected:

27

Creating an Example Android App in Android Studio

Figure 3-24
Before proceeding, delete the background property from the layout file so that the background returns to the
default setting.

Finally, use the Project panel to locate the app -> res -> values -> strings.xml file and double-click on it to load it
into the editor. Currently, the XML should read as follows:
<resources>

 <string name="app_name">AndroidSample</string>

 <string name="convert_string">Convert</string>

 <string name="dollars_hint">dollars</string>

</resources>

To demonstrate resources in action, change the string value currently assigned to the convert_string resource to
“Convert to Euros” and then return to the Layout Editor tool by selecting the tab for the layout file in the editor
panel. Note that the layout has picked up the new resource value for the string.

There is also a quick way to access the value of a resource referenced in an XML file. With the Layout Editor
tool in Split or Code mode, click on the “@string/convert_string” property setting so that it highlights, and
then press Ctrl-B on the keyboard (Cmd-B on macOS). Android Studio will subsequently open the strings.xml
file and take you to the line in that file where this resource is declared. Use this opportunity to revert the string
resource to the original “Convert” text and to add the following additional entry for a string resource that will
be referenced later in the app code:
<resources>

.

.

 <string name="convert_string">Convert</string>

 <string name="dollars_hint">dollars</string>

 <string name="no_value_string">No Value</string>
</resources>

Resource strings may also be edited using the Android Studio Translations Editor by clicking on the Open editor
link in the top right-hand corner of the editor window. This will display the Translation Editor in the main panel
of the Android Studio window:

28

Creating an Example Android App in Android Studio

Figure 3-25
This editor allows the strings assigned to resource keys to be edited and for translations for multiple languages
to be managed.

3.9 Adding Interaction
The final step in this example project is to make the app interactive so that when the user enters a dollar value
into the EditText field and clicks the convert button, the converted euro value appears on the TextView. This
involves the implementation of some event handling on the Button widget. Specifically, the Button needs to be
configured so that a method in the app code is called when an onClick event is triggered. Event handling can
be implemented in several ways and is covered in a later chapter entitled “An Overview and Example of Android
Event Handling”. Return the layout editor to Design mode, select the Button widget in the layout editor, refer to
the Attributes tool window, and specify a method named convertCurrency as shown below:

Figure 3-26
Next, double-click on the MainActivity.java file in the Project tool window (app -> java -> <package name> ->
MainActivity) to load it into the code editor and add the code for the convertCurrency method to the class file so
that it reads as follows, noting that it is also necessary to import some additional Android packages:
package com.ebookfrenzy.androidsample;

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;

import android.view.View;
import android.widget.EditText;
import android.widget.TextView;

29

Creating an Example Android App in Android Studio

.

.

import java.util.Locale;

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 public void convertCurrency(View view) {

 EditText dollarText = findViewById(R.id.dollarText);
 TextView textView = findViewById(R.id.textView);

 if (!dollarText.getText().toString().equals("")) {

 float dollarValue = Float.parseFloat(dollarText.getText().toString());
 float euroValue = dollarValue * 0.85F;
 textView.setText(String.format(Locale.ENGLISH,"%.2f", euroValue));
 } else {
 textView.setText(R.string.no_value_string);
 }
 }
}

The method begins by obtaining references to the EditText and TextView objects by making a call to a method
named findViewById, passing through the id assigned within the layout file. A check is then made to ensure that
the user has entered a dollar value, and if so, that value is extracted, converted from a String to a floating point
value, and converted to euros. Finally, the result is displayed on the TextView widget.

If any of this is unclear, rest assured that these concepts will be covered in greater detail in later chapters. In
particular, the topic of accessing widgets from within code using findByViewId and an introduction to an
alternative technique referred to as view binding will be covered in the chapter entitled “An Overview of Android
View Binding”.

3.10 Summary
While not excessively complex, several steps are involved in setting up an Android development environment.
Having performed those steps, it is worth working through an example to ensure the environment is correctly
installed and configured. In this chapter, we have created an example application and then used the Android
Studio Layout Editor tool to modify the user interface layout. In doing so, we explored the importance of using
resources wherever possible, particularly string values, and briefly touched on layouts. Next, we looked at the
underlying XML used to store Android application user interface designs.

Finally, an onClick event was added to a Button connected to a method implemented to extract the user input
from the EditText component, convert it from dollars to euros and then display the result on the TextView.

91

Chapter 11

11. An Overview of Android View
Binding
An essential part of developing Android apps involves the interaction between the code and the views that make
up the user interface layouts. This chapter will look at the options available for gaining access to layout views in
code, emphasizing an option known as view binding. Once the basics of view bindings have been covered, the
chapter will outline how to convert the AndroidSample project to use this approach.

11.1 Find View by Id
As outlined in the chapter entitled “The Anatomy of an Android Application”, all of the resources that make up
an application are compiled into a class named R. Amongst those resources are those that define layouts. Within
the R class is a subclass named layout, which contains the layout resources, including the views that make up
the user interface. Most apps will need to implement interaction between the code and these views, for example,
when reading the value entered into the EditText view or changing the content displayed on a TextView.

Before the introduction of Android Studio 3.6, the most common option for gaining access to a view from within
the app code involved writing code to manually find a view based on its id via the findViewById() method. For
example:
TextView exampleView = findViewById(R.id.exampleView);

With the reference obtained, the view’s properties can then be accessed. For example:
exampleView.setText("Hello");

While finding views by id is still a viable option, it has some limitations, the most significant disadvantage of
findViewById() being that it is possible to obtain a reference to a view that has not yet been created within the
layout, leading to a null pointer exception when an attempt is made to access the view’s properties.

Since Android Studio 3.6, an alternative way of accessing views from the app code has been available in the form
of view binding.

11.2 View Binding
When view binding is enabled in an app module, Android Studio automatically generates a binding class for
each layout file. The layout views can be accessed from within the code using this binding class without using
findViewById().

The name of the binding class generated by Android Studio is based on the layout file name converted to so-
called “camel case” with the word “Binding” appended to the end. For the activity_main.xml file, for example,
the binding class will be called ActivityMainBinding.

Android Studio Giraffe is inconsistent in using view bindings within project templates. For example, the Empty
Views Activity template used when we created the AndroidSample project does not use view bindings. The Basic
Views Activity template, on the other hand, is implemented using view binding. If you use a template that does
not use view binding, it is important to know how to add it to your project.

92

An Overview of Android View Binding

11.3 Converting the AndroidSample project
In the remainder of this chapter, we will practice migrating to view bindings by converting the AndroidSample
project to use view binding instead of findViewById().

Begin by launching Android Studio and opening the AndroidSample project created in the chapter entitled
“Creating an Example Android App in Android Studio”.

11.4 Enabling View Binding
To use view binding, some changes must first be made to the build.gradle.kts file for each module in which view
binding is needed. In the case of the AndroidSample project, this will require a slight change to the Gradle Scripts
-> build.gradle.kts (Module: app) file. Load this file into the editor, locate the android section and add an entry to
enable the viewBinding property as follows:
plugins {

 id("com.android.application")

}

android {

 buildFeatures {
 viewBinding = true
 }
.

.

Once this change has been made, click on the Sync Now link at the top of the editor panel, then use the Build
menu to clean and rebuild the project to ensure the binding class is generated. The next step is to use the binding
class within the code.

11.5 Using View Binding
The first step in this process is to “inflate” the view binding class to access the root view within the layout. This
root view will then be used as the content view for the layout.

The logical place to perform these tasks is within the onCreate() method of the activity associated with the
layout. A typical onCreate() method will read as follows:
@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

}

To switch to using view binding, the view binding class will need to be imported and the class modified as follows.
Note that since the layout file is named activity_main.xml, we can surmise that the binding class generated by
Android Studio will be named ActivityMainBinding. Note that if you used a domain other than com.example
when creating the project, the import statement below would need to be changed to reflect this:
.

.

import android.widget.EditText;

import android.widget.TextView;

93

An Overview of Android View Binding

.

.
import com.example.androidsample.databinding.ActivityMainBinding;
.

.

public class MainActivity extends AppCompatActivity {

 private ActivityMainBinding binding;
.

.

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 binding = ActivityMainBinding.inflate(getLayoutInflater());
 View view = binding.getRoot();
 setContentView(view);
}

Now that we have a reference to the binding, we can access the views by name as follows:
public void convertCurrency(View view) {

 EditText dollarText = findViewById(R.id.dollarText);

 TextView textView = findViewById(R.id.textView);

 if (!binding.dollarText.getText().toString().equals("")) {

 Float dollarValue = Float.valueOf(

 binding.dollarText.getText().toString());
 Float euroValue = dollarValue * 0.85F;

 binding.textView.setText(String.format(Locale.ENGLISH,"%.2f",
 euroValue));

 } else {

 binding.textView.setText(R.string.no_value_string);
 }

}

Compile and run the app and verify that the currency conversion process works as before.

11.6 Choosing an Option
Notwithstanding their failure to adopt view bindings in the Empty Views Activity project template, Google
strongly recommends using view binding wherever possible. Therefore, view binding should be used when
developing your own projects.

11.7 View Binding in the Book Examples
Any chapters in this book that rely on a project template that does not implement view binding will first be
migrated. Instead of replicating the steps every time a migration needs to be performed, however, these chapters

94

An Overview of Android View Binding

will refer you back here to refresh your memory (don’t worry, after a few chapters, the necessary changes will
become second nature). To help with the process, the following section summarizes the migration steps more
concisely.

11.8 Migrating a Project to View Binding
The process for converting a project module to use view binding involves the following steps:

1. Edit the module-level Gradle build script file listed in the Project tool window as Gradle Scripts -> build.
gradle.kts (Module :app) where <project name> is the name of the project (for example AndroidSample).

2. Locate the android section of the file and add an entry to enable the viewBinding property as follows:
android {

 buildFeatures {
 viewBinding = true
 }
.

.

3. Click on the Sync Now link at the top of the editor to resynchronize the project with these new build settings.

4. Edit the MainActivity.java file and modify it to read as follows (where <reverse domain> represents the
domain name used when the project was created and <project name> is replaced by the lowercase name of the
project, for example, androidsample) and <binding name> is the name of the binding for the corresponding
layout resource file (for example, the binding for activity_main.xml is ActivityMainBinding).

.

.

import android.view.View;

import com.<reverse domain>.<project name>.databinding.<binding name>;

public class MainActivity extends AppCompatActivity {

 private <binding name> binding;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 binding = <binding name>.inflate(getLayoutInflater());
 View view = binding.getRoot();
 setContentView(view);
 }

5. Access views by name as properties of the binding object.

11.9 Summary
Before the introduction of Android Studio 3.6, access to layout views from within the code of an app involved
using the findViewById() method. An alternative is now available in the form of view bindings. View bindings

95

An Overview of Android View Binding

consist of classes Android Studio automatically generates for each XML layout file. These classes contain bindings
to each view in the corresponding layout, providing a safer option than the findViewById() method. However, as
of Android Studio Giraffe, view bindings are not enabled by default in some project templates. Additional steps
are required to enable and configure support within each project module manually.

97

Chapter 12

12. Understanding Android
Application and Activity Lifecycles
In earlier chapters, we learned that Android applications run within processes and comprise multiple components
in the form of activities, services, and broadcast receivers. This chapter aims to expand on this knowledge by
looking at the lifecycle of applications and activities within the Android runtime system.

Regardless of the fanfare about how much memory and computing power resides in the mobile devices of
today compared to the desktop systems of yesterday, it is important to keep in mind that these devices are
still considered to be “resource constrained” by the standards of modern desktop and laptop-based systems,
particularly in terms of memory. As such, a key responsibility of the Android system is to ensure that these
limited resources are managed effectively and that the operating system and the applications running on it
remain responsive to the user at all times. To achieve this, Android is given complete control over the lifecycle
and state of the processes in which the applications run and the individual components that comprise those
applications.

An important factor in developing Android applications, therefore, is to understand Android’s application and
activity lifecycle management models of Android, and how an application can react to the state changes likely to
be imposed upon it during its execution lifetime.

12.1 Android Applications and Resource Management
The operating system views each running Android application as a separate process. If the system identifies that
resources on the device are reaching capacity, it will take steps to terminate processes to free up memory.

When determining which process to terminate to free up memory, the system considers both the priority and
state of all currently running processes, combining these factors to create what is referred to by Google as
an importance hierarchy. Processes are then terminated, starting with the lowest priority and working up the
hierarchy until sufficient resources have been liberated for the system to function.

12.2 Android Process States
Processes host applications, and applications are made up of components. Within an Android system, the
current state of a process is defined by the highest-ranking active component within the application it hosts. As
outlined in Figure 12-1, a process can be in one of the following five states at any given time:

98

Understanding Android Application and Activity Lifecycles

Figure 12-1
12.2.1 Foreground Process
These processes are assigned the highest level of priority. At any one time, there are unlikely to be more than one
or two foreground processes active, which are usually the last to be terminated by the system. A process must
meet one or more of the following criteria to qualify for foreground status:

• Hosts an activity with which the user is currently interacting.

• Hosts a Service connected to the activity with which the user is interacting.

• Hosts a Service that has indicated, via a call to startForeground(), that termination would disrupt the user
experience.

• Hosts a Service executing either its onCreate(), onResume(), or onStart() callbacks.

• Hosts a Broadcast Receiver that is currently executing its onReceive() method.

12.2.2 Visible Process
A process containing an activity that is visible to the user but is not the activity with which the user is interacting
is classified as a “visible process”. This is typically the case when an activity in the process is visible to the user,
but another activity, such as a partial screen or dialog, is in the foreground. A process is also eligible for visible
status if it hosts a Service that is, itself, bound to a visible or foreground activity.

12.2.3 Service Process
Processes that contain a Service that has already been started and is currently executing.

12.2.4 Background Process
A process that contains one or more activities that are not currently visible to the user and does not host a
Service that qualifies for Service Process status. Processes that fall into this category are at high risk of termination
if additional memory needs to be freed for higher-priority processes. Android maintains a dynamic list of
background processes, terminating processes in chronological order such that processes that were the least
recently in the foreground are killed first.

99

Understanding Android Application and Activity Lifecycles

12.2.5 Empty Process
Empty processes no longer contain active applications and are held in memory, ready to serve as hosts for
newly launched applications. This is analogous to keeping the doors open and the engine running on a bus in
anticipation of passengers arriving. Such processes are considered the lowest priority and are the first to be killed
to free up resources.

12.3 Inter-Process Dependencies
Determining the highest priority process is more complex than outlined in the preceding section because
processes can often be interdependent. As such, when determining the priority of a process, the Android
system will also consider whether the process is in some way serving another process of higher priority (for
example, a service process acting as the content provider for a foreground process). As a basic rule, the Android
documentation states that a process can never be ranked lower than another process that it is currently serving.

12.4 The Activity Lifecycle
As we have previously determined, the state of an Android process is primarily determined by the status of
the activities and components that make up the application it hosts. It is important to understand, therefore,
that these activities also transition through different states during the execution lifetime of an application. The
current state of an activity is determined, in part, by its position in something called the Activity Stack.

12.5 The Activity Stack
The runtime system maintains an Activity Stack for each application running on an Android device. When an
application is launched, the first of the application’s activities to be started is placed onto the stack. When a second
activity is started, it is placed on the top of the stack, and the previous activity is pushed down. The activity at the
top of the stack is called the active (or running) activity. When the active activity exits, it is popped off the stack
by the runtime and the activity located immediately beneath it in the stack becomes the current active activity.
For example, the activity at the top of the stack might exit because the task for which it is responsible has been
completed. Alternatively, the user may have selected a “Back” button on the screen to return to the previous
activity, causing the current activity to be popped off the stack by the runtime system and destroyed. A visual
representation of the Android Activity Stack is illustrated in Figure 12-2.

As shown in the diagram, new activities are pushed onto the top of the stack when they are started. The current
active activity is located at the top of the stack until it is either pushed down the stack by a new activity or popped
off the stack when it exits or the user navigates to the previous activity. If resources become constrained, the
runtime will kill activities, starting with those at the bottom of the stack.

The Activity Stack is what is referred to in programming terminology as a Last-In-First-Out (LIFO) stack in that
the last item to be pushed onto the stack is the first to be popped off.

100

Understanding Android Application and Activity Lifecycles

Figure 12-2

12.6 Activity States
An activity can be in one of several states during the course of its execution within an application:

• Active / Running – The activity is at the top of the Activity Stack, is the foreground task visible on the device
screen, has focus, and is currently interacting with the user. This is the least likely activity to be terminated in
the event of a resource shortage.

• Paused – The activity is visible to the user but does not currently have focus (typically because the current
active activity partially obscures this activity). Paused activities are held in memory, remain attached to the
window manager, retain all state information, and can quickly be restored to active status when moved to the
top of the Activity Stack.

• Stopped – The activity is currently not visible to the user (in other words, it is obscured on the device display
by other activities). As with paused activities, it retains all state and member information but is at higher risk
of termination in low-memory situations.

• Killed – The runtime system has terminated the activity to free up memory and is no longer present on the
Activity Stack. Such activities must be restarted if required by the application.

12.7 Configuration Changes
So far in this chapter, we have looked at two causes for the change in the state of an Android activity, namely
the movement of an activity between the foreground and background and the termination of an activity by
the runtime system to free up memory. In fact, there is a third scenario in which the state of an activity can
dramatically change, which involves a change to the device configuration.

101

Understanding Android Application and Activity Lifecycles

By default, any configuration change that impacts the appearance of an activity (such as rotating the orientation
of the device between portrait and landscape or changing a system font setting) will cause the activity to be
destroyed and recreated. The reasoning behind this is that such changes affect resources such as the layout of the
user interface, and destroying and recreating impacted activities is the quickest way for an activity to respond to
the configuration change. It is, however, possible to configure an activity so that the system does not restart it in
response to specific configuration changes.

12.8 Handling State Change
It should be clear from this chapter that an application and, by definition, the components contained therein will
transition through many states during its lifespan. Of particular importance is the fact that these state changes
(up to and including complete termination) are imposed upon the application by the Android runtime subject
to the user’s actions and the availability of resources on the device.

In practice, however, these state changes are not imposed entirely without notice, and an application will, in most
circumstances, be notified by the runtime system of the changes and given the opportunity to react accordingly.
This will typically involve saving or restoring both internal data structures and user interface state, thereby
allowing the user to switch seamlessly between applications and providing at least the appearance of multiple
concurrently running applications.

Android provides two ways to handle the changes to the lifecycle states of the objects within an app. One
approach involves responding to state change method calls from the operating system and is covered in detail in
the next chapter entitled “Handling Android Activity State Changes”.

A new approach that Google recommends involves the lifecycle classes included with the Jetpack Android
Architecture components, introduced in “Modern Android App Architecture with Jetpack” and explained in more
detail in the chapter entitled “Working with Android Lifecycle-Aware Components”.

12.9 Summary
Mobile devices are typically considered to be resource constrained, particularly in terms of onboard memory
capacity. Consequently, a prime responsibility of the Android operating system is to ensure that applications,
and the operating system in general, remain responsive to the user.

Applications are hosted on Android within processes. Each application, in turn, comprises components in the
form of activities and Services.

The Android runtime system has the power to terminate both processes and individual activities to free up
memory. Process state is considered by the runtime system when deciding whether a process is a suitable
candidate for termination. The state of a process largely depends upon the status of the activities hosted by that
process.

The key message of this chapter is that an application moves through various states during its execution
lifespan and has very little control over its destiny within the Android runtime environment. Those processes
and activities not directly interacting with the user run a higher risk of termination by the runtime system.
An essential element of Android application development, therefore, involves the ability of an application to
respond to state change notifications from the operating system.

125

Chapter 16

16. Understanding Android Views,
View Groups and Layouts
With the possible exception of listening to streaming audio, a user’s interaction with an Android device is
primarily visual and tactile. All of this interaction occurs through the user interfaces of the applications installed
on the device, including both the built-in applications and any third-party applications installed by the user.
Therefore, it should come as no surprise that a critical element of developing Android applications involves
designing and creating user interfaces.

This chapter covers the Android user interface structure, including an overview of the elements that can be
combined to make up a user interface: Views, View Groups, and Layouts.

16.1 Designing for Different Android Devices
The term “Android device” covers many tablet and smartphone products with different screen sizes and
resolutions. As a result, application user interfaces must now be carefully designed to ensure correct presentation
on as wide a range of display sizes as possible. A key part of this is ensuring that the user interface layouts resize
correctly when run on different devices. This can largely be achieved through careful planning and using the
layout managers outlined in this chapter.

It is also essential to remember that most Android-based smartphones and tablets can be held by the user in
both portrait and landscape orientations. A well-designed user interface should be able to adapt to such changes
and make sensible layout adjustments to utilize the available screen space in each orientation.

16.2 Views and View Groups
Every item in a user interface is a subclass of the Android View class (to be precise android.view.View). The
Android SDK provides a set of pre-built views that can be used to construct a user interface. Typical examples
include standard items such as the Button, CheckBox, ProgressBar, and TextView classes. Such views are also
referred to as widgets or components. For requirements not met by the widgets supplied with the SDK, new views
may be created by subclassing and extending an existing class or creating an entirely new component by building
directly on top of the View class.

A view can also comprise multiple other views (otherwise known as a composite view). Such views are subclassed
from the Android ViewGroup class (android.view.ViewGroup), which is itself a subclass of View. An example
of such a view is the RadioGroup, which is intended to contain multiple RadioButton objects such that only
one can be in the “on” position at any one time. Regarding structure, composite views consist of a single parent
view (derived from the ViewGroup class and otherwise known as a container view or root element) capable of
containing other views (known as child views).

Another category of ViewGroup-based container view is that of the layout manager.

16.3 Android Layout Managers
In addition to the widget style views discussed in the previous section, the SDK also includes a set of views
referred to as layouts. Layouts are container views (and, therefore, subclassed from ViewGroup) designed to
control how child views are positioned on the screen.

126

Understanding Android Views, View Groups and Layouts

The Android SDK includes the following layout views that may be used within an Android user interface design:

• ConstraintLayout – Introduced in Android 7, this layout manager is recommended for most layout
requirements. ConstraintLayout allows the positioning and behavior of the views in a layout to be defined
by simple constraint settings assigned to each child view. The flexibility of this layout allows complex layouts
to be quickly and easily created without the necessity to nest other layout types inside each other, resulting
in improved layout performance. ConstraintLayout is also tightly integrated into the Android Studio Layout
Editor tool. Unless otherwise stated, this is the layout of choice for most of examples in this book.

• LinearLayout – Positions child views in a single row or column depending on the orientation selected. A
weight value can be set on each child to specify how much of the layout space that child should occupy relative
to other children.

• TableLayout – Arranges child views into a grid format of rows and columns. Each row within a table is
represented by a TableRow object child, which, in turn, contains a view object for each cell.

• FrameLayout – The purpose of the FrameLayout is to allocate an area of the screen, typically to display
a single view. If multiple child views are added, they will, by default, appear on top of each other and be
positioned in the top left-hand corner of the layout area. Alternate positioning of individual child views can
be achieved by setting gravity values on each child. For example, setting a center_vertical gravity value on a
child will cause it to be positioned in the vertical center of the containing FrameLayout view.

• RelativeLayout – The RelativeLayout allows child views to be positioned relative to each other and the
containing layout view through the specification of alignments and margins on child views. For example,
child View A may be configured to be positioned in the vertical and horizontal center of the containing
RelativeLayout view. View B, on the other hand, might also be configured to be centered horizontally within
the layout view but positioned 30 pixels above the top edge of View A, thereby making the vertical position
relative to that of View A. The RelativeLayout manager can be helpful when designing a user interface that
must work on various screen sizes and orientations.

• AbsoluteLayout – Allows child views to be positioned at specific X and Y coordinates within the containing
layout view. Using this layout is discouraged since it lacks the flexibility to respond to screen size and
orientation changes.

• GridLayout – A GridLayout instance is divided by invisible lines that form a grid containing rows and
columns of cells. Child views are then placed in cells and may be configured to cover multiple cells horizontally
and vertically, allowing a wide range of layout options to be quickly and easily implemented. Gaps between
components in a GridLayout may be implemented by placing a special type of view called a Space view into
adjacent cells or setting margin parameters.

• CoordinatorLayout – Introduced as part of the Android Design Support Library with Android 5.0, the
CoordinatorLayout is designed specifically for coordinating the appearance and behavior of the app bar
across the top of an application screen with other view elements. When creating a new activity using the Basic
Views Activity template, the parent view in the main layout will be implemented using a CoordinatorLayout
instance. This layout manager will be covered in greater detail, starting with the chapter “Working with the
Floating Action Button and Snackbar”.

When considering layouts in the user interface for an Android application, it is worth keeping in mind that, as
outlined in the next section, these can be nested within each other to create a user interface design of just about
any necessary level of complexity.

127

Understanding Android Views, View Groups and Layouts

16.4 The View Hierarchy
Each view in a user interface represents a rectangular area of the display. A view is responsible for what is drawn
in that rectangle and responding to events within that part of the screen (such as a touch event).

A user interface screen is comprised of a view hierarchy with a root view positioned at the top of the tree and
child views positioned on branches below. The child of a container view appears on top of its parent view and
is constrained to appear within the bounds of the parent view’s display area. Consider, for example, the user
interface illustrated in Figure 16-1:

Figure 16-1
In addition to the visible button and checkbox views, the user interface actually includes a number of layout views
that control how the visible views are positioned. Figure 16-2 shows an alternative view of the user interface, this
time highlighting the presence of the layout views in relation to the child views:

Figure 16-2

128

Understanding Android Views, View Groups and Layouts

As was previously discussed, user interfaces are constructed in the form of a view hierarchy with a root view at
the top. This being the case, we can also visualize the above user interface example in the form of the view tree
illustrated in Figure 16-3:

Figure 16-3
The view hierarchy diagram gives probably the clearest overview of the relationship between the various views
that make up the user interface shown in Figure 16-1. When a user interface is displayed to the user, the Android
runtime walks the view hierarchy, starting at the root view and working down the tree as it renders each view.

16.5 Creating User Interfaces
With a clearer understanding of the concepts of views, layouts and the view hierarchy, the following few chapters
will focus on the steps involved in creating user interfaces for Android activities. In fact, there are three different
approaches to user interface design: using the Android Studio Layout Editor tool, handwriting XML layout
resource files or writing Java code, each of which will be covered.

16.6 Summary
Each element within a user interface screen of an Android application is a view that is ultimately subclassed from
the android.view.View class. Each view represents a rectangular area of the device display and is responsible both
for what appears in that rectangle and for handling events that take place within the view’s bounds. Multiple
views may be combined to create a single composite view. The views within a composite view are children of a
container view which is generally a subclass of android.view.ViewGroup (which is itself a subclass of android.
view.View). A user interface is comprised of views constructed in the form of a view hierarchy.

The Android SDK includes a range of pre-built views that can be used to create a user interface. These include
basic components such as text fields and buttons, in addition to a range of layout managers that can be used
to control the positioning of child views. If the supplied views do not meet a specific requirement, custom
views may be created, either by extending or combining existing views, or by subclassing android.view.View and
creating an entirely new class of view.

User interfaces may be created using the Android Studio Layout Editor tool, handwriting XML layout resource
files or by writing Java code. Each of these approaches will be covered in the chapters that follow.

129

Chapter 17

17. A Guide to the Android Studio
Layout Editor Tool
It is challenging to think of an Android application concept that does not require some form of user interface.
Most Android devices come equipped with a touch screen and keyboard (either virtual or physical), and taps
and swipes are the primary interaction between the user and the application. Invariably these interactions take
place through the application’s user interface.

A well-designed and implemented user interface, an essential factor in creating a successful and popular Android
application, can vary from simple to highly complex, depending on the design requirements of the individual
application. Regardless of the level of complexity, the Android Studio Layout Editor tool significantly simplifies
the task of designing and implementing Android user interfaces.

17.1 Basic vs. Empty Views Activity Templates
As outlined in the chapter entitled “The Anatomy of an Android Application”, Android applications comprise
one or more activities. An activity is a standalone module of application functionality that usually correlates
directly to a single user interface screen. As such, when working with the Android Studio Layout Editor, we are
invariably work on the layout for an activity.

When creating a new Android Studio project, several templates are available to be used as the starting point for
the user interface of the main activity. The most basic templates are the Basic Views Activity and Empty Views
Activity templates. Although these seem similar at first glance, there are considerable differences between the
two options. To see these differences within the layout editor, use the View Options menu to enable Show System
UI, as shown in Figure 17-1 below:

Figure 17-1
The Empty Views Activity template creates a single layout file consisting of a ConstraintLayout manager instance
containing a TextView object, as shown in Figure 17-2:

130

A Guide to the Android Studio Layout Editor Tool

Figure 17-2
The Basic Views Activity, on the other hand, consists of multiple layout files. The top-level layout file has a
CoordinatorLayout as the root view, a configurable app bar (which contains a toolbar) that appears across the
top of the device screen (marked A in Figure 17-3), and a floating action button (the email button marked B).
In addition to these items, the activity_main.xml layout file contains a reference to a second file named content_
main.xml containing the content layout (marked C):

Figure 17-3
The Basic Views Activity contains layouts for two screens containing a button and a text view. This template
aims to demonstrate how to implement navigation between multiple screens within an app. If an unmodified
app using the Basic Views Activity template were to be run, the first of these two screens would appear (marked
A in Figure 17-4). Pressing the Next button would navigate to the second screen (B), which, in turn, contains a
button to return to the first screen:

131

A Guide to the Android Studio Layout Editor Tool

Figure 17-4
This app behavior uses of two Android features referred to as fragments and navigation, which will be covered
starting with the chapters entitled “An Introduction to Android Fragments” and “An Overview of the Navigation
Architecture Component” respectively.

The content_main.xml file contains a special fragment, known as a Navigation Host Fragment which allows
different content to be switched in and out of view depending on the settings configured in the res -> layout
-> nav_graph.xml file. In the case of the Basic Views Activity template, the nav_graph.xml file is configured to
switch between the user interface layouts defined in the fragment_first.xml and fragment_second.xml files based
on the Next and Previous button selections made by the user.

The Empty Views Activity template is helpful if you need neither a floating action button nor a menu in your
activity and do not need the special app bar behavior provided by the CoordinatorLayout, such as options to
make the app bar and toolbar collapse from view during certain scrolling operations (a topic covered in the
chapter entitled “Working with the AppBar and Collapsing Toolbar Layouts”). However, the Basic Views Activity
is helpful because it provides these elements by default. In fact, it is often quicker to create a new activity using
the Basic Views Activity template and delete the elements you do not require than to use the Empty Views
Activity template and manually implement behavior such as collapsing toolbars, a menu, or a floating action
button.

Since not all of the examples in this book require the features of the Basic Views Activity template, however,
most of the examples in this chapter will use the Empty Views Activity template unless the example requires one
or other of the features provided by the Basic Views Activity template.

For future reference, if you need a menu but not a floating action button, use the Basic Views Activity and follow
these steps to delete the floating action button:

1. Double-click on the main activity_main.xml layout file in the Project tool window under app -> res ->
layout to load it into the Layout Editor. With the layout loaded into the Layout Editor tool, select the floating
action button and tap the keyboard Delete key to remove the object from the layout.

2. Locate and edit the Java code for the activity (located under app -> java -> <package name> -> <activity
class name> and remove the floating action button code from the onCreate method as follows:

132

A Guide to the Android Studio Layout Editor Tool

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 setContentView(binding.getRoot());

 setSupportActionBar(binding.toolbar);

 NavController navController = Navigation.findNavController(this, R.id.nav_
host_fragment_content_main);

 appBarConfiguration = new AppBarConfiguration.Builder(navController.
getGraph()).build();

 NavigationUI.setupActionBarWithNavController(this, navController,
appBarConfiguration);

 binding.fab.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 Snackbar.make(view, "Replace with your own action", Snackbar.LENGTH_
LONG)

 .setAction("Action", null).show();

 }

 });

}

If you need a floating action button but no menu, use the Basic Views Activity template and follow these steps:

1. Edit the main activity class file and delete the onCreateOptionsMenu and onOptionsItemSelected methods.

2. Select the res -> menu item in the Project tool window and tap the keyboard Delete key to remove the folder
and corresponding menu resource files from the project.

If you need to use the Basic Views Activity template but need neither the navigation features nor the second
content fragment, follow these steps:

1. Within the Project tool window, navigate to and double-click on the app -> res -> navigation -> nav_graph.
xml file to load it into the navigation editor.

2. Within the editor, select the SecondFragment entry in the graph panel and tap the keyboard delete key to
remove it from the graph.

3. Locate and delete the SecondFragment.java (app -> java -> <package name> -> SecondFragment) and
fragment_second.xml (app -> res -> layout -> fragment_second.xml) files.

4. The final task is to remove some code from the FirstFragment class so that the Button view no longer
navigates to the now non-existent second fragment when clicked. Locate the FirstFragment.java file, double-
click on it to load it into the editor, and remove the code from the onViewCreated() method so that it reads
as follows:

public void onViewCreated(@NonNull View view, Bundle savedInstanceState) {

 super.onViewCreated(view, savedInstanceState);

133

A Guide to the Android Studio Layout Editor Tool

 binding.buttonFirst.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 NavHostFragment.findNavController(FirstFragment.this)

 .navigate(R.id.action_FirstFragment_to_SecondFragment);

 }

 });

}

17.2 The Android Studio Layout Editor
As demonstrated in previous chapters, the Layout Editor tool provides a “what you see is what you get”
(WYSIWYG) environment in which views can be selected from a palette and then placed onto a canvas
representing the display of an Android device. Once a view has been placed on the canvas, it can be moved,
deleted, and resized (subject to the constraints of the parent view). Moreover, various properties relating to the
selected view may be modified using the Attributes tool window.

Under the surface, the Layout Editor tool constructs an XML resource file containing the definition of the user
interface that is being designed. As such, the Layout Editor tool operates in three distinct modes: Design, Code,
and Split.

17.3 Design Mode
In design mode, the user interface can be visually manipulated by directly working with the view palette and the
graphical representation of the layout. Figure 17-5 highlights the key areas of the Android Studio Layout Editor
tool in design mode:

Figure 17-5

134

A Guide to the Android Studio Layout Editor Tool

A – Palette – The palette provides access to the range of view components the Android SDK provides. These are
grouped into categories for easy navigation. Items may be added to the layout by dragging a view component
from the palette and dropping it at the desired position on the layout.

B – Device Screen – The device screen provides a visual “what you see is what you get” representation of the
user interface layout as it is being designed. This layout allows direct design manipulation by allowing views to
be selected, deleted, moved, and resized. The device model represented by the layout can be changed anytime
using a menu in the toolbar.

C – Component Tree – As outlined in the previous chapter (“Understanding Android Views, View Groups and
Layouts”), user interfaces are constructed using a hierarchical structure. The component tree provides a visual
overview of the hierarchy of the user interface design. Selecting an element from the component tree will cause
the corresponding view in the layout to be selected. Similarly, selecting a view from the device screen layout will
select that view in the component tree hierarchy.

D – Attributes – All of the component views listed in the palette have associated with them a set of attributes
that can be used to adjust the behavior and appearance of that view. The Layout Editor’s attributes panel provides
access to the attributes of the currently selected view in the layout allowing changes to be made.

E – Toolbar – The Layout Editor toolbar provides quick access to a wide range of options, including, amongst
other options, the ability to zoom in and out of the device screen layout, change the device model currently
displayed, rotate the layout between portrait and landscape and switch to a different Android SDK API level.
The toolbar also has a set of context-sensitive buttons which will appear when relevant view types are selected
in the device screen layout.

F – Mode Switching Controls – These three buttons provide a way to switch back and forth between the Layout
Editor tool’s Design, Code, and Split modes.

G - Zoom and Pan Controls - This control panel allows you to zoom in and out of the design canvas, grab the
canvas, and pan around to find obscured areas when zoomed in.

17.4 The Palette
The Layout Editor palette is organized into two panels designed to make it easy to locate and preview view
components for addition to a layout design. The category panel (marked A in Figure 17-6) lists the different
categories of view components supported by the Android SDK. When a category is selected from the list, the
second panel (B) updates to display a list of the components that fall into that category:

Figure 17-6

135

A Guide to the Android Studio Layout Editor Tool

To add a component from the palette onto the layout canvas, select the item from the component list or the
preview panel, drag it to the desired location on the canvas, and drop it into place.

A search for a specific component within the selected category may be initiated by clicking the search button
(marked C in Figure 17-6 above) in the palette toolbar and typing in the component name. As characters are
typed, matching results will appear in the component list panel. If you are unsure of the component’s category,
select the All Results category before or during the search operation.

17.5 Design Mode and Layout Views
By default, the layout editor will appear in Design mode, as shown in Figure 17-5 above. This mode provides
a visual representation of the user interface. Design mode can be selected at any time by clicking on the View
Modes button, as shown in Figure 17-7:

Figure 17-7
When the Layout Editor tool is in Design mode, the layout can be viewed in two ways. The view shown in Figure
17-5 above is the Design view and shows the layout and widgets as they will appear in the running app. A second
mode, the Blueprint view, can be shown instead of or concurrently with the Design view. The toolbar menu in
Figure 17-8 provides options to display the Design, Blueprint, or both views. Settings are also available to adjust
for color blindness. A fifth option, Force Refresh Layout, causes the layout to rebuild and redraw. This can be
useful when the layout enters an unexpected state or is not accurately reflecting the current design settings:

Figure 17-8

145

A Guide to the Android Studio Layout Editor Tool

17.17 Summary
A key part of developing Android applications involves the creation of the user interface. This is performed
within the Android Studio environment using the Layout Editor tool, which operates in three modes. In Design
mode, view components are selected from a palette, positioned on a layout representing an Android device
screen, and configured using a list of attributes. The underlying XML representing the user interface layout can
be directly edited in Code mode. Split mode, on the other hand, allows the layout to be created and modified
both visually and via direct XML editing. These modes combine to provide an extensive and intuitive user
interface design environment.

The layout validation panel allows user interface layouts to be quickly previewed on various device screen sizes.

211

Chapter 25

25. A Guide to Using Apply Changes
in Android Studio
Now that some of the basic concepts of Android development using Android Studio have been covered, this is
a good time to introduce the Android Studio Apply Changes feature. As all experienced developers know, every
second spent waiting for an app to compile and run is better spent writing and refining code.

25.1 Introducing Apply Changes
In early versions of Android Studio, each time a change to a project needed to be tested, Android Studio would
recompile the code, convert it to Dex format, generate the APK package file, and install it on the device or
emulator. Having performed these steps, the app would finally be launched and ready for testing. Even on a
fast development system, this process takes considerable time to complete. It is not uncommon for it to take a
minute or more for this process to complete for a large application.

Apply Changes, in contrast, allows many code and resource changes within a project to be reflected nearly
instantaneously within the app while it is already running on a device or emulator session.

Consider, for example, an app being developed in Android Studio which has already been launched on a device
or emulator. If changes are made to resource settings or the code within a method, Apply Changes will push
the updated code and resources to the running app and dynamically “swap” the changes. The changes are then
reflected in the running app without the need to build, deploy and relaunch the entire app. This often allows
changes to be tested in a fraction of the time without Apply Changes.

25.2 Understanding Apply Changes Options
Android Studio provides three options for applying changes to a running app in the form of Run App, Apply
Changes and Restart Activity and Apply Code Changes. These options can be summarized as follows:

• Run App - Stops the currently running app and restarts it. If no changes have been made to the project since
it was last launched, this option will restart the app. If, on the other hand, changes have been made to the
project, Android Studio will rebuild and re-install the app onto the device or emulator before launching it.

• Apply Code Changes - This option can be used when the only changes made to a project involve modifications
to the body of existing methods or when a new class or method has been added. When selected, the changes
will be applied to the running app without needing to restart the app or the currently running activity. This
mode cannot, however, be used when changes have been made to any project resources, such as a layout file.
Other restrictions include removing methods, changing a method signature, renaming classes, and other
structural code changes. It is also impossible to use this option when changes have been made to the project
manifest.

• Apply Changes and Restart Activity - When selected, this mode will dynamically apply any code or resource
changes made within the project and restart the activity without re-installing or restarting the app. Unlike the
Apply Code changes option, this can be used when changes have been made to the code and resources of the
project. However, the same restrictions involving some structural code changes and manifest modifications
apply.

212

A Guide to Using Apply Changes in Android Studio

25.3 Using Apply Changes
When a project has been loaded into Android Studio but is not yet running on a device or emulator, it can be
launched as usual using either the run (marked A in Figure 25-1) or debug (B) button located in the toolbar:

Figure 25-1
After the app has launched and is running, a stop button (marked A in Figure 25-2) will appear, and the Apply
Changes and Restart Activity (B) and Apply Code Changes (C) buttons will be enabled:

Figure 25-2
If the changes cannot be applied when one of the Apply Changes buttons is selected, Android Studio will display
a message indicating the failure and an explanation. Figure 25-3, for example, shows the message displayed by
Android Studio when the Apply Code Changes option is selected after a change has been made to a resource file:

Figure 25-3
In this situation, the solution is to use the Apply Changes and Restart Activity option (for which a link is provided).
Similarly, the following message will appear when an attempt to apply changes that involve the removal of a
method is made:

Figure 25-4
In this case, the only option is to click on the Run App button to re-install and restart the app. As an alternative
to manually selecting the correct option, Android Studio may be configured to automatically fall back to
performing a Run App operation.

213

A Guide to Using Apply Changes in Android Studio

25.4 Configuring Apply Changes Fallback Settings
The Apply Changes fallback settings are located in the Android Studio Settings dialog. Within the Settings
dialog, select the Build, Execution, Deployment entry in the left-hand panel, followed by Deployment, as shown
in Figure 25-5:

Figure 25-5
Once the required options have been enabled, click on Apply, followed by the OK button to commit the changes
and dismiss the dialog. After these defaults have been enabled, Android Studio will automatically re-install and
restart the app when necessary.

25.5 An Apply Changes Tutorial
Launch Android Studio, select the New Project option from the welcome screen, and choose the Basic Views
Activity template within the resulting new project dialog before clicking the Next button.

Enter ApplyChanges into the Name field and specify com.ebookfrenzy.applychanges as the package name. Before
clicking the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java.

25.6 Using Apply Code Changes
Begin by clicking the run button and selecting an emulator or physical device as the run target. After clicking the
run button, track the time before the example app appears on the device or emulator.

Once running, click on the action button (the button displaying an envelope icon in the screen’s lower right-hand
corner). Note that a Snackbar instance appears, displaying text which reads “Replace with your own action”, as
shown in Figure 25-6:

Figure 25-6
Once the app is running, the Apply Changes buttons should have been enabled, indicating that certain project
changes can be applied without reinstalling and restarting the app. To see this in action, edit the MainActivity.
java file, locate the onCreate method, and modify the action code so that a different message is displayed when
the action button is selected:

214

A Guide to Using Apply Changes in Android Studio

binding.fab.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 Snackbar.make(view, "Apply Changes is Amazing!", Snackbar.LENGTH_LONG)
 .setAction("Action", null).show();

 }

});

With the code change implemented, click the Apply Code Changes button and note that a message appears
within a few seconds indicating the app has been updated. Tap the action button and note that the new message
is now displayed in the Snackbar.

25.7 Using Apply Changes and Restart Activity
Any resource change will require the use of the Apply Changes and Restart Activity option. Within Android
Studio, select the app -> res -> layout -> fragment_first.xml layout file. With the Layout Editor tool in Design
mode, select the default TextView component and change the text property in the attributes tool window to
“Hello Android”.

Ensure that the fallback options outlined in “Configuring Apply Changes Fallback Settings” above are turned
off before clicking on the Apply Code Changes button. Note that the request fails because this change involves
project resources. Click on the Apply Changes and Restart Activity button and verify that the activity restarts and
displays the new text on the TextView widget.

25.8 Using Run App
As previously described, removing a method requires the complete re-installation and restart of the running
app. To experience this, edit the MainActivity.java file and add a new method after the onCreate method as
follows:
public void demoMethod() {

}

Use the Apply Code Changes button and confirm that the changes are applied without re-installing the app.

Next, delete the new method and verify that clicking on either of the two Apply Changes buttons will result in
the request failing. The only way to run the app after such a change is to click the Run App button.

25.9 Summary
Apply Changes is a feature of Android Studio designed to significantly accelerate the code, build and run cycle
performed when developing an app. The Apply Changes feature can push updates to the running application, in
many cases, without reinstalling or restarting the app. Apply Changes provides several different levels of support
depending on the nature of the modification being applied to the project.

215

Chapter 26

26. An Overview and Example of
Android Event Handling
Much has been covered in the previous chapters relating to the design of user interfaces for Android applications.
However, an area that has yet to be covered involves how a user’s interaction with the user interface triggers the
underlying activity to perform a task. In other words, from the previous chapters, we know how to create a user
interface containing a button view but not how to make something happen within the application when the user
touches it.

Therefore, this chapter’s primary objective is to provide an overview of event handling in Android applications
together with an Android Studio-based example project.

26.1 Understanding Android Events
Android events can take various forms but are usually generated in response to an external action. The most
common form of events, particularly for devices such as tablets and smartphones, involve some form of
interaction with the touch screen. Such events fall into the category of input events.

The Android framework maintains an event queue into which events are placed as they occur. Events are then
removed from the queue on a first-in, first-out (FIFO) basis. In the case of an input event, such as a touch on the
screen, the event is passed to the view positioned at the location on the screen where the touch took place. In
addition to the event notification, the view is also passed a range of information (depending on the event type)
about the nature of the event, such as the coordinates of the point of contact between the user’s fingertip and
the screen.

To handle an event that has been passed, the view must have an event listener in place. The Android View
class, from which all user interface components are derived, contains a range of event listener interfaces, each
containing an abstract declaration for a callback method. To be able to respond to an event of a particular type,
a view must register the appropriate event listener and implement the corresponding callback. For example,
if a button is to respond to a click event (the equivalent of the user touching and releasing the button view as
though clicking on a physical button), it must both register the View.onClickListener event listener (via a call to
the target view’s setOnClickListener() method) and implement the corresponding onClick() callback method.
If a “click” event is detected on the screen at the location of the button view, the Android framework will call
the onClick() method of that view when that event is removed from the event queue. It is, of course, within the
implementation of the onClick() callback method that any tasks or other methods called in response to the
button click should be performed.

26.2 Using the android:onClick Resource
Before exploring event listeners in more detail, it is worth noting that a shortcut is available when all that
is required is for a callback method to be called when a user “clicks” on a button view in the user interface.
Consider a user interface layout containing a button view named button1 with the requirement that when the
user touches the button, a method called buttonClick() declared in the activity class is called. All that is required
to implement this behavior is to write the buttonClick() method (which takes as an argument a reference to the
view that triggered the click event) and add a single line to the declaration of the button view in the XML file.
For example:

216

An Overview and Example of Android Event Handling

<Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:onClick="buttonClick"
 android:text="Click me" />

This provides a simple way to capture click events. It does not, however, provide the range of options offered by
event handlers, which is the topic of the rest of this chapter. As outlined in later chapters, the onClick property
also has limitations in layouts involving fragments. When working within Android Studio Layout Editor, the
onClick property can be found and configured in the Attributes panel when a suitable view type is selected in
the device screen layout.

26.3 Event Listeners and Callback Methods
In the example activity outlined later in this chapter, the steps involved in registering an event listener and
implementing the callback method will be covered in detail. Before doing so, however, it is worth taking some
time to outline the event listeners available in the Android framework and the callback methods associated with
each one.

• onClickListener – Used to detect click style events whereby the user touches and then releases an area of the
device display occupied by a view. Corresponds to the onClick() callback method, which is passed a reference
to the view that received the event as an argument.

• onLongClickListener – Used to detect when the user maintains the touch over a view for an extended period.
Corresponds to the onLongClick() callback method, which is passed as an argument the view that received
the event.

• onTouchListener – Used to detect any contact with the touch screen, including individual or multiple touches
and gesture motions. Corresponding with the onTouch() callback, this topic will be covered in greater detail
in the chapter entitled “Android Touch and Multi-touch Event Handling”. The callback method is passed as
arguments the view that received the event and a MotionEvent object.

• onCreateContextMenuListener – Listens for the creation of a context menu as the result of a long click.
Corresponds to the onCreateContextMenu() callback method. The callback is passed the menu, the view that
received the event and a menu context object.

• onFocusChangeListener – Detects when focus moves away from the current view due to interaction with a
trackball or navigation key. Corresponds to the onFocusChange() callback method, which is passed the view
that received the event and a Boolean value to indicate whether focus was gained or lost.

• onKeyListener – Used to detect when a key on a device is pressed while a view has focus. Corresponds to
the onKey() callback method. It is passed as arguments the view that received the event, the KeyCode of the
physical key that was pressed, and a KeyEvent object.

26.4 An Event Handling Example
In the remainder of this chapter, we will create an Android Studio project designed to demonstrate the
implementation of an event listener and corresponding callback method to detect when the user has clicked
on a button. The code within the callback method will update a text view to indicate that the event has been
processed.

Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking the Next button.

217

An Overview and Example of Android Event Handling

Enter EventExample into the Name field and specify com.ebookfrenzy.eventexample as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java. Using the steps outlined in section 11.8 Migrating a Project to View Binding, convert the
project to use view binding.

26.5 Designing the User Interface
The user interface layout for the MainActivity class in this example will consist of a ConstraintLayout, a Button,
and a TextView, as illustrated in Figure 26-1.

Figure 26-1
Locate and select the activity_main.xml file created by Android Studio (located in the Project tool window under
app -> res -> layouts) and double-click on it to load it into the Layout Editor tool.

Ensure that Autoconnect is enabled, then drag a Button widget from the palette and move it so that it is positioned
in the horizontal center of the layout and beneath the existing TextView widget. When correctly positioned,
drop the widget into place so that the autoconnect system adds appropriate constraints.

Select the “Hello World!” TextView widget and use the Attributes panel to set the ID to statusText. Repeat this
step to change the ID of the Button widget to myButton.

Add any missing constraints by clicking on the Infer Constraints button in the layout editor toolbar.

With the Button widget selected, use the Attributes panel to set the text property to Press Me. Extract the text
string on the button to a resource named press_me.

With the user interface layout completed, the next step is registering the event listener and callback method.

26.6 The Event Listener and Callback Method
For this example, an onClickListener needs to be registered for the myButton view. This is achieved by calling the
setOnClickListener() method of the button view, passing through a new onClickListener object as an argument,
and implementing the onClick() callback method. Since this task only needs to be performed when the activity
is created, a good location is the onCreate() method of the MainActivity class.

218

An Overview and Example of Android Event Handling

If the MainActivity.java file is already open within an editor session, select it by clicking on the tab in the editor
panel. Alternatively, locate it within the Project tool window by navigating to (app -> java -> com.ebookfrenzy.
eventexample -> MainActivity) and double-click on it to load it into the code editor. Once loaded, locate the
template onCreate() method and modify it to obtain a reference to the button view, register the event listener,
and implement the onClick() callback method:
package com.ebookfrenzy.eventexample;

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 View view = binding.getRoot();

 setContentView(view);

 binding.myButton.setOnClickListener(
 new Button.OnClickListener() {
 public void onClick(View v) {

 }
 }
);
 }

.

.

}

The above code has registered the event listener on the button and implemented the onClick() method. If the
application were to be run at this point, however, there would be no indication that the event listener installed
on the button was working since there is, as yet, no code implemented within the body of the onClick() callback
method. The goal for the example is to have a message appear on the TextView when the button is clicked, so
some further code changes need to be made:
@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 View view = binding.getRoot();

 setContentView(view);

219

An Overview and Example of Android Event Handling

 binding.myButton.setOnClickListener(

 new Button.OnClickListener() {

 public void onClick(View v) {

 binding.statusText.setText("Button clicked");
 }

 }

);

}

Complete this tutorial phase by compiling and running the application on either an AVD emulator or a physical
Android device. On touching and releasing the button view (otherwise known as “clicking”), the text view
should change to display the “Button clicked” text.

26.7 Consuming Events
The detection of standard clicks (as opposed to long clicks) on views is a straightforward case of event handling.
The example will now be extended to include the detection of long click events, which occur when the user clicks
and holds a view on the screen and, in doing so, cover the topic of event consumption.

Consider the code for the onClick() method in the above section of this chapter. The callback is declared as void
and, as such, does not return a value to the Android framework after it has finished executing.

On the other hand, the code assigned to the onLongClickListener is required to return a Boolean value to the
Android framework. The purpose of this return value is to indicate to the Android runtime whether or not the
callback has consumed the event. If the callback returns a true value, the framework discards the event. If, on
the other hand, the callback returns a false value, the Android framework will consider the event still to be active
and pass it along to the next matching event listener registered on the same view.

As with many programming concepts, this is best demonstrated with an example. The first step is to add an event
listener and callback method for long clicks to the button view in the example activity:
@Override

protected void onCreate(Bundle savedInstanceState) {

.

.

 binding.myButton.setOnLongClickListener(
 new Button.OnLongClickListener() {
 public boolean onLongClick(View v) {
 binding.statusText.setText("Long button click");
 return true;
 }
 }
);
 }

}

When a long click is detected, the onLongClick() callback method will display “Long button click” on the text
view. Note, however, that the callback method returns a true value to indicate that it has consumed the event.
Run the application and press and hold the Button view until the “Long button click” text appears in the text
view. On releasing the button, the text view displays the “Long button click” text indicating that the onClick
listener code was not called.

220

An Overview and Example of Android Event Handling

Next, modify the code so that the onLongClick listener now returns a false value:
button.setOnLongClickListener(

 new Button.OnLongClickListener() {

 public boolean onLongClick(View v) {

 TextView myTextView = findViewById(R.id.myTextView);

 myTextView.setText("Long button click");

 return false;
 }

 }

);

Once again, compile and run the application and perform a long click on the button until the long click message
appears. However, after releasing the button this time, note that the onClick listener is also triggered, and the text
changes to “Button clicked”. This is because the false value returned by the onLongClick listener code indicated to
the Android framework that the event was not consumed by the method and was eligible to be passed on to the
next registered listener on the view. In this case, the runtime ascertained that the onClickListener on the button
was also interested in events of this type and subsequently called the onClick listener code.

26.8 Summary
A user interface is of little practical use if the views it contains do not do anything in response to user interaction.
Android bridges the gap between the user interface and the back-end code of the application through the
concepts of event listeners and callback methods. The Android View class defines a set of event listeners which
can be registered on view objects. Each event listener also has associated with it a callback method.

When an event takes place on a view in a user interface, that event is placed into an event queue and handled
on a first-in, first-out basis by the Android runtime. If the view on which the event took place has registered a
listener that matches the type of event, the corresponding callback method is called. This code then performs
any tasks required by the activity before returning. Some callback methods are required to return a Boolean
value to indicate whether the event needs to be passed on to other event listeners registered on the view or
discarded by the system.

Now that the basics of event handling have been covered, the next chapter will explore touch events with a
particular emphasis on handling multiple touches.

221

Chapter 27

27. Android Touch and Multi-touch
Event Handling
Most Android-based devices use a touch screen as the primary interface between the user and the device. The
previous chapter introduced how a touch on the screen translates into an action within a running Android
application. There is, however, much more to touch event handling than responding to a single finger tap on
a view object. Most Android devices can, for example, detect more than one touch at a time. Nor are touches
limited to a single point on the device display. Touches can be dynamic as the user slides one or more contact
points across the screen’s surface.

An application can also interpret touches as a gesture. Consider, for example, that a horizontal swipe is typically
used to turn the page of an eBook or how a pinching motion can zoom in and out of an image displayed on the
screen.

An application can also interpret touches as a gesture. Consider, for example, that a horizontal swipe is typically
used to turn the page of an eBook or how a pinching motion can zoom in and out of an image displayed on the
screen.

This chapter will explain the handling of touches that involve motion and explore the concept of intercepting
multiple concurrent touches. The topic of identifying distinct gestures will be covered in the next chapter.

27.1 Intercepting Touch Events
A view object can intercept touch events by registering an onTouchListener event listener and implementing
the corresponding onTouch() callback method. The following code, for example, ensures that any touches on a
ConstraintLayout view instance named myLayout result in a call to the onTouch() method:
binding.myLayout.setOnTouchListener(

 new ConstraintLayout.OnTouchListener() {

 public boolean onTouch(View v, MotionEvent m) {

 // Perform tasks here

 return true;

 }

 }

);

As indicated in the code example, the onTouch() callback is required to return a Boolean value indicating to the
Android runtime system whether or not the event should be passed on to other event listeners registered on the
same view or discarded. The method is passed both a reference to the view on which the event was triggered and
an object of type MotionEvent.

27.2 The MotionEvent Object
The MotionEvent object passed through to the onTouch() callback method is the key to obtaining information
about the event. Information within the object includes the location of the touch within the view and the type of
action performed. The MotionEvent object is also the key to handling multiple touches.

222

Android Touch and Multi-touch Event Handling

27.3 Understanding Touch Actions
An important aspect of touch event handling involves identifying the type of action the user performed. The
type of action associated with an event can be obtained by making a call to the getActionMasked() method of
the MotionEvent object, which was passed through to the onTouch() callback method. When the first touch
on a view occurs, the MotionEvent object will contain an action type of ACTION_DOWN together with the
coordinates of the touch. When that touch is lifted from the screen, an ACTION_UP event is generated. Any
motion of the touch between the ACTION_DOWN and ACTION_UP events will be represented by ACTION_
MOVE events.

When more than one touch is performed simultaneously on a view, the touches are referred to as pointers.
In a multi-touch scenario, pointers begin and end with event actions of type ACTION_POINTER_DOWN
and ACTION_POINTER_UP, respectively. To identify the index of the pointer that triggered the event, the
getActionIndex() callback method of the MotionEvent object must be called.

27.4 Handling Multiple Touches
The chapter entitled “An Overview and Example of Android Event Handling” began exploring event handling
within the narrow context of a single-touch event. In practice, most Android devices can respond to multiple
consecutive touches (though it is important to note that the number of simultaneous touches that can be detected
varies depending on the device).

As previously discussed, each touch in a multi-touch situation is considered by the Android framework to be
a pointer. Each pointer, in turn, is referenced by an index value and assigned an ID. The current number of
pointers can be obtained via a call to the getPointerCount() method of the current MotionEvent object. The ID
for a pointer at a particular index in the list of current pointers may be obtained via a call to the MotionEvent
getPointerId() method. For example, the following code excerpt obtains a count of pointers and the ID of the
pointer at index 0:
public boolean onTouch(View v, MotionEvent m) {

 int pointerCount = m.getPointerCount();

 int pointerId = m.getPointerId(0);

 return true;

}

Note that the pointer count will always be greater than or equal to 1 when the onTouch listener is triggered (since
at least one touch must have occurred for the callback to be triggered).

A touch on a view, particularly one involving motion across the screen, will generate a stream of events before
the point of contact with the screen is lifted. An application will likely need to track individual touches over
multiple touch events. While the ID of a specific touch gesture will not change from one event to the next, it is
important to remember that the index value will change as other touch events come and go. When working with
a touch gesture over multiple events, the ID value must be used as the touch reference to ensure the same touch
is being tracked. When calling methods that require an index value, this should be obtained by converting the
ID for a touch to the corresponding index value via a call to the findPointerIndex() method of the MotionEvent
object.

27.5 An Example Multi-Touch Application
The example application created in the remainder of this chapter will track up to two touch gestures as they
move across a layout view. As the events for each touch are triggered, the coordinates, index, and ID for each
touch will be displayed on the screen.

Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the

223

Android Touch and Multi-touch Event Handling

Empty Views Activity template before clicking on the Next button.

Enter MotionEvent into the Name field and specify com.ebookfrenzy.motionevent as the package name. Before
clicking the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java.

Adapt the project to use view binding as outlined in section 11.8 Migrating a Project to View Binding.

27.6 Designing the Activity User Interface
The user interface for the application’s sole activity is to consist of a ConstraintLayout view containing two
TextView objects. Within the Project tool window, navigate to app -> res -> layout and double-click on the
activity_main.xml layout resource file to load it into the Android Studio Layout Editor tool.

Select and delete the default “Hello World!” TextView widget and then, with autoconnect enabled, drag and
drop a new TextView widget so that it is centered horizontally and positioned at the 16dp margin line on the
top edge of the layout:

Figure 27-1
Drag a second TextView widget and position and constrain it so that a 32dp margin distances it from the bottom
of the first widget:

Figure 27-2
Using the Attributes tool window, change the IDs for the TextView widgets to textView1 and textView2,
respectively. Change the text displayed on the widgets to read “Touch One Status” and “Touch Two Status” and
extract the strings to resources using the warning button in the top right-hand corner of the Layout Editor.

27.7 Implementing the Touch Event Listener
To receive touch event notification, it will be necessary to register a touch listener on the layout view within the
onCreate() method of the MainActivity activity class. Select the MainActivity.java tab from the Android Studio
editor panel to display the source code. Within the onCreate() method, add code to register the touch listener
and implement code which, in this case, is going to call a second method named handleTouch() to which is
passed the MotionEvent object:
package com.ebookfrenzy.motionevent;

import androidx.appcompat.app.AppCompatActivity;

import androidx.constraintlayout.widget.ConstraintLayout;

import android.os.Bundle;

import android.view.MotionEvent;
import android.view.View;

224

Android Touch and Multi-touch Event Handling

import com.ebookfrenzy.motionevent.databinding.ActivityMainBinding;

public class MainActivity extends AppCompatActivity {

 private ActivityMainBinding binding;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 View view = binding.getRoot();

 setContentView(view);

 binding.activityMain.setOnTouchListener(
 new ConstraintLayout.OnTouchListener() {
 public boolean onTouch(View v, MotionEvent m) {
 handleTouch(m);
 return true;
 }
 }
);
 }

When we designed the user interface, the parent ConstraintLayout was not assigned an ID that would allow us
to access it via the view binding mechanism. Since this layout component is the topmost component in the UI
layout hierarchy, we have been able to reference it using the root binding property in the code above.

Before testing the application, the final task is to implement the handleTouch() method called by the listener. The
code for this method reads as follows:
void handleTouch(MotionEvent m) {

 int pointerCount = m.getPointerCount();

 for (int i = 0; i < pointerCount; i++)

 {

 int x = (int) m.getX(i);

 int y = (int) m.getY(i);

 int id = m.getPointerId(i);

 int action = m.getActionMasked();

 int actionIndex = m.getActionIndex();

 String actionString;

 switch (action)

 {

 case MotionEvent.ACTION_DOWN:

 actionString = "DOWN";

 break;

225

Android Touch and Multi-touch Event Handling

 case MotionEvent.ACTION_UP:

 actionString = "UP";

 break;

 case MotionEvent.ACTION_POINTER_DOWN:

 actionString = "PNTR DOWN";

 break;

 case MotionEvent.ACTION_POINTER_UP:

 actionString = "PNTR UP";

 break;

 case MotionEvent.ACTION_MOVE:

 actionString = "MOVE";

 break;

 default:

 actionString = "";

 }

 String touchStatus = "Action: " + actionString + " Index: " + actionIndex
+ " ID: " + id + " X: " + x + " Y: " + y;

 if (id == 0)

 binding.textView1.setText(touchStatus);

 else

 binding.textView2.setText(touchStatus);

 }

}

Before compiling and running the application, it is worth taking the time to walk through this code systematically
to highlight the tasks performed.

The code begins by obtaining references to the two TextView objects in the user interface and identifying how
many pointers are currently active on the view:
TextView textView1 = findViewById(R.id.textView1);

TextView textView2 = findViewById(R.id.textView2);

int pointerCount = m.getPointerCount();

Next, the pointerCount variable initiates a for loop, which performs tasks for each active pointer. The first few
lines of the loop obtain the X and Y coordinates of the touch together with the corresponding event ID, action
type, and action index. Lastly, a string variable is declared:
for (int i = 0; i < pointerCount; i++)

{

 int x = (int) m.getX(i);

 int y = (int) m.getY(i);

 int id = m.getPointerId(i);

 int action = m.getActionMasked();

 int actionIndex = m.getActionIndex();

 String actionString;

226

Android Touch and Multi-touch Event Handling

Since action types equate to integer values, a switch statement is used to convert the action type to a more
meaningful string value, which is stored in the previously declared actionString variable:
switch (action)

{

 case MotionEvent.ACTION_DOWN:

 actionString = "DOWN";

 break;

 case MotionEvent.ACTION_UP:

 actionString = "UP";

 break;

 case MotionEvent.ACTION_POINTER_DOWN:

 actionString = "PNTR DOWN";

 break;

 case MotionEvent.ACTION_POINTER_UP:

 actionString = "PNTR UP";

 break;

 case MotionEvent.ACTION_MOVE:

 actionString = "MOVE";

 break;

 default:

 actionString = "";

}

Finally, the string message is constructed using the actionString value, the action index, touch ID, and X and Y
coordinates. The ID value is then used to decide whether the string should be displayed on the first or second
TextView object:
String touchStatus = "Action: " + actionString + " Index: "

 + actionIndex + " ID: " + id + " X: " + x + " Y: " + y;

if (id == 0)

 binding.textView1.setText(touchStatus);

else

 binding.textView2.setText(touchStatus);

27.8 Running the Example Application
Compile and run the application and, once launched, experiment with single and multiple touches on the screen
and note that the text views update to reflect the events as illustrated in Figure 27-3. When running on an
emulator, multiple touches may be simulated by holding down the Ctrl (Cmd on macOS) key while clicking the
mouse button (note that simulating multiple touches may not work if the emulator is running in a tool window):

227

Android Touch and Multi-touch Event Handling

Figure 27-3

27.9 Summary
Activities receive notifications of touch events by registering an onTouchListener event listener and implementing
the onTouch() callback method, which, in turn, is passed a MotionEvent object when called by the Android
runtime. This object contains information about the touch, such as the type of touch event, the coordinates of
the touch, and a count of the number of touches currently in contact with the view.

When multiple touches are involved, each point of contact is referred to as a pointer, with each assigned an index
and an ID. While the index of a touch can change from one event to another, the ID will remain unchanged until
the touch ends.

This chapter has worked through creating an example Android application designed to display the coordinates
and action type of up to two simultaneous touches on a device display.

Having covered touches in general, the next chapter (entitled “Detecting Common Gestures Using the Android
Gesture Detector Class”) will look further at touchscreen event handling through gesture recognition.

229

Chapter 28

28. Detecting Common Gestures
Using the Android Gesture Detector
Class
The term “gesture” defines a contiguous sequence of interactions between the touch screen and the user. A
typical gesture begins at the point that the screen is first touched and ends when the last finger or pointing device
leaves the display surface. When correctly harnessed, gestures can be implemented to communicate between
the user and the application. Swiping motions to turn the pages of an eBook or a pinching movement involving
two touches to zoom in or out of an image are prime examples of how gestures can interact with an application.

The Android SDK provides mechanisms for the detection of both common and custom gestures within an
application. Common gestures involve interactions such as a tap, double tap, long press, or a swiping motion in
either a horizontal or a vertical direction (referred to in Android nomenclature as a fling).

This chapter explores using the Android GestureDetector class to detect common gestures performed on
the display of an Android device. The next chapter, “Implementing Custom Gesture and Pinch Recognition on
Android”, will cover detecting more complex, custom gestures such as circular motions and pinches.

28.1 Implementing Common Gesture Detection
When a user interacts with the display of an Android device, the onTouchEvent() method of the currently
active application is called by the system and passed MotionEvent objects containing data about the user’s
contact with the screen. This data can be interpreted to identify if the motion on the screen matches a common
gesture such as a tap or a swipe. This can be achieved with minimal programming effort by using the Android
GestureDetectorCompat class. This class is designed to receive motion event information from the application
and trigger method calls based on the type of common gesture, if any, detected.

The basic steps in detecting common gestures are as follows:

1. Declaration of a class which implements the GestureDetector.OnGestureListener interface including the
required onFling(), onDown(), onScroll(), onShowPress(), onSingleTapUp() and onLongPress() callback
methods. Note that this can be either an entirely new or an enclosing activity class. If double-tap gesture
detection is required, the class must also implement the GestureDetector.OnDoubleTapListener interface
and include the corresponding onDoubleTap() method.

2. Creation of an instance of the Android GestureDetectorCompat class, passing through an instance of the
class created in step 1 as an argument.

3. An optional call to the setOnDoubleTapListener() method of the GestureDetectorCompat instance to enable
double tap detection if required.

4. Implementation of the onTouchEvent() callback method on the enclosing activity, which, in turn, must call
the onTouchEvent() method of the GestureDetectorCompat instance, passing through the current motion
event object as an argument to the method.

230

Detecting Common Gestures Using the Android Gesture Detector Class

Once implemented, the result is a set of methods within the application code that will be called when a gesture
of a particular type is detected. The code within these methods can then be implemented to perform any tasks
that need to be performed in response to the corresponding gesture.

In the remainder of this chapter, we will work through creating an example project intended to put the above
steps into practice.

28.2 Creating an Example Gesture Detection Project
This project aims to detect the full range of common gestures currently supported by the GestureDetectorCompat
class and to display status information to the user indicating the type of gesture that has been detected.

Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter CommonGestures into the Name field and specify com.ebookfrenzy.commongestures as the package name.
Before clicking the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java.

Adapt the project to use view binding as outlined in section 11.8 Migrating a Project to View Binding.

Once the new project has been created, navigate to the app -> res -> layout -> activity_main.xml file in the
Project tool window and double-click on it to load it into the Layout Editor tool.

Within the Layout Editor tool, select the “Hello, World!” TextView component and, in the Attributes tool
window, enter gestureStatusText as the ID. Finally, set the textSize to 20sp and enable the bold textStyle:

Figure 28-1

28.3 Implementing the Listener Class
As previously outlined, it is necessary to create a class that implements the GestureDetector.OnGestureListener
interface and, if double tap detection is required, the GestureDetector.OnDoubleTapListener interface. While
this can be an entirely new class, it is also perfectly valid to implement this within the current activity class.
Therefore, we will modify the MainActivity class to implement these listener interfaces for this example. Edit the
MainActivity.java file so that it reads as follows:
package com.ebookfrenzy.commongestures;

import android.view.GestureDetector;
.

.

public class MainActivity extends AppCompatActivity

 implements GestureDetector.OnGestureListener,

231

Detecting Common Gestures Using the Android Gesture Detector Class

 GestureDetector.OnDoubleTapListener
{

.

.

}

Declaring that the class implements the listener interfaces mandates that the corresponding methods also be
implemented in the class:
package com.ebookfrenzy.commongestures;

.

.
import android.view.MotionEvent;

public class MainActivity extends AppCompatActivity

 implements GestureDetector.OnGestureListener,

 GestureDetector.OnDoubleTapListener {

.

.

 @Override
 public boolean onDown(MotionEvent event) {
 binding.gestureStatusText.setText ("onDown");
 return true;
 }

 @Override
 public boolean onFling(MotionEvent event1, MotionEvent event2,
 float velocityX, float velocityY) {
 binding.gestureStatusText.setText("onFling");
 return true;
 }

 @Override
 public void onLongPress(MotionEvent event) {
 binding.gestureStatusText.setText("onLongPress");
 }

 @Override
 public boolean onScroll(MotionEvent e1, MotionEvent e2,
 float distanceX, float distanceY) {
 binding.gestureStatusText.setText("onScroll");
 return true;
 }

 @Override
 public void onShowPress(MotionEvent event) {
 binding.gestureStatusText.setText("onShowPress");

232

Detecting Common Gestures Using the Android Gesture Detector Class

 }

 @Override
 public boolean onSingleTapUp(MotionEvent event) {
 binding.gestureStatusText.setText("onSingleTapUp");
 return true;
 }

 @Override
 public boolean onDoubleTap(MotionEvent event) {
 binding.gestureStatusText.setText("onDoubleTap");
 return true;
 }

 @Override
 public boolean onDoubleTapEvent(MotionEvent event) {
 binding.gestureStatusText.setText("onDoubleTapEvent");
 return true;
 }

 @Override
 public boolean onSingleTapConfirmed(MotionEvent event) {
 binding.gestureStatusText.setText("onSingleTapConfirmed");
 return true;
 }
.

.

.

}

Note that many of these methods return true. This indicates to the Android Framework that the method has
consumed the event and does not need to be passed to the next event handler in the stack.

28.4 Creating the GestureDetectorCompat Instance
With the activity class now updated to implement the listener interfaces, the next step is to create an instance
of the GestureDetectorCompat class. Since this only needs to be performed once at the point that the activity
is created, the best place for this code is in the onCreate() method. Since we also want to detect double taps, the
code also needs to call the setOnDoubleTapListener() method of the GestureDetectorCompat instance:
package com.ebookfrenzy.commongestures;

.

.

import androidx.core.view.GestureDetectorCompat;

public class MainActivity extends AppCompatActivity

 implements GestureDetector.OnGestureListener,

 GestureDetector.OnDoubleTapListener {

233

Detecting Common Gestures Using the Android Gesture Detector Class

 private ActivityMainBinding binding;

 private GestureDetectorCompat gDetector;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 View view = binding.getRoot();

 setContentView(view);

 this.gDetector = new GestureDetectorCompat(this,this);
 gDetector.setOnDoubleTapListener(this);
 }

.

.

}

28.5 Implementing the onTouchEvent() Method
If the application were to be compiled and run at this point, nothing would happen if gestures were performed on
the device display. This is because no code has been added to intercept touch events and to pass them through to the
GestureDetectorCompat instance. To achieve this, it is necessary to override the onTouchEvent() method within
the activity class and implement it such that it calls the onTouchEvent() method of the GestureDetectorCompat
instance. Remaining in the MainActivity.java file, therefore, implement this method so that it reads as follows:
@Override

public boolean onTouchEvent(MotionEvent event) {

 this.gDetector.onTouchEvent(event);

 // Be sure to call the superclass implementation

 return super.onTouchEvent(event);

}

28.6 Testing the Application
Compile and run the application on either a physical Android device or an AVD emulator. Once launched,
experiment with swipes, presses, scrolling motions, and double and single taps. Note that the text view updates
to reflect the events as illustrated in Figure 28-2:

234

Detecting Common Gestures Using the Android Gesture Detector Class

Figure 28-2

28.7 Summary
Any physical contact between the user and the touchscreen display of a device can be considered a “gesture”.
Lacking the physical keyboard and mouse pointer of a traditional computer system, gestures are widely used
as a method of interaction between the user and the application. While a gesture can comprise just about any
sequence of motions, there is a widely used set of gestures with which users of touchscreen devices have become
familiar. Some of these so-called “common gestures” can be easily detected within an application by using the
Android Gesture Detector classes. In this chapter, the use of this technique has been outlined both in theory and
through the implementation of an example project.

Having covered common gestures in this chapter, the next chapter will look at detecting a wider range of gesture
types, including the ability to design and detect your own gestures.

265

Chapter 32

32. Modern Android App
Architecture with Jetpack
For many years, Google did not recommend a specific approach to building Android apps other than to provide
tools and development kits while letting developers decide what worked best for a particular project or individual
programming style. That changed in 2017 with the introduction of the Android Architecture Components,
which, in turn, became part of Android Jetpack when it was released in 2018.

This chapter provides an overview of the concepts of Jetpack, Android app architecture recommendations, and
some key architecture components. Once the basics have been covered, these topics will be covered in more
detail and demonstrated through practical examples in later chapters.

32.1 What is Android Jetpack?
Android Jetpack consists of Android Studio, the Android Architecture Components, the Android Support
Library, and a set of guidelines recommending how an Android App should be structured. The Android
Architecture Components are designed to make it quicker and easier to perform common tasks when developing
Android apps while also conforming to the key principle of the architectural guidelines.

While all Android Architecture Components will be covered in this book, this chapter will focus on the key
architectural guidelines and the ViewModel, LiveData, and Lifecycle components while introducing Data
Binding and Repositories.

Before moving on, it is important to understand that the Jetpack approach to app development is optional.
While highlighting some of the shortcomings of other techniques that have gained popularity over the years,
Google stopped short of completely condemning those approaches to app development. Google is taking the
position that while there is no right or wrong way to develop an app, there is a recommended way.

32.2 The “Old” Architecture
In the chapter entitled “Creating an Example Android App in Android Studio”, an Android project was created
consisting of a single activity that contained all of the code for presenting and managing the user interface
together with the back-end logic of the app. Until the introduction of Jetpack, the most common architecture
followed this paradigm with apps consisting of multiple activities (one for each screen within the app), with each
activity class to some degree mixing user interface and back-end code.

This approach led to a range of problems related to the lifecycle of an app (for example, an activity is destroyed
and recreated each time the user rotates the device leading to the loss of any app data that had not been saved
to some form of persistent storage) as well as issues such as inefficient navigation involving launching a new
activity for each app screen accessed by the user.

32.3 Modern Android Architecture
At the most basic level, Google now advocates single-activity apps where different screens are loaded as content
within the same activity.

Modern architecture guidelines also recommend separating different areas of responsibility within an app into
entirely separate modules (a concept referred to as “separation of concerns”). One of the keys to this approach

266

Modern Android App Architecture with Jetpack

is the ViewModel component.

32.4 The ViewModel Component
The purpose of ViewModel is to separate the user interface-related data model and logic of an app from the
code responsible for displaying and managing the user interface and interacting with the operating system.
When designed this way, an app will consist of one or more UI Controllers, such as an activity, together with
ViewModel instances responsible for handling the data those controllers need.

The ViewModel only knows about the data model and corresponding logic. It knows nothing about the user
interface and does not attempt to directly access or respond to events relating to views within the user interface.
When a UI controller needs data to display, it asks the ViewModel to provide it. Similarly, when the user enters
data into a view within the user interface, the UI controller passes it to the ViewModel for handling.

This separation of responsibility addresses the issues relating to the lifecycle of UI controllers. Regardless of how
often the UI controller is recreated during the lifecycle of an app, the ViewModel instances remain in memory,
thereby maintaining data consistency. For example, a ViewModel used by an activity will remain in memory
until the activity finishes, which, in the single activity app, is not until the app exits.

Figure 32-1

32.5 The LiveData Component
Consider an app that displays real-time data, such as the current price of a financial stock. The app could
use a stock price web service to continuously update the data model within the ViewModel with the latest
information. This real-time data is of use only if it is displayed to the user promptly. There are only two ways that
the UI controller can ensure that the latest data is displayed in the user interface. One option is for the controller
to continuously check with the ViewModel to determine if the data has changed since it was last displayed.
However, the problem with this approach is that it could be more efficient. To maintain the real-time nature of
the data feed, the UI controller would have to run on a loop, continuously checking for the data to change.

A better solution would be for the UI controller to receive a notification when a specific data item within a
ViewModel changes. This is made possible by using the LiveData component. LiveData is a data holder that
allows a value to become observable. In basic terms, an observable object can notify other objects when changes
to its data occur, thereby solving the problem of ensuring that the user interface always matches the data within
the ViewModel.

This means, for example, that a UI controller interested in a ViewModel value can set up an observer, which will,
in turn, be notified when that value changes. In our hypothetical application, for example, the stock price would

267

Modern Android App Architecture with Jetpack

be wrapped in a LiveData object within the ViewModel, and the UI controller would assign an observer to the
value, declaring a method to be called when the value changes. When triggered by data change, this method will
read the updated value from the ViewModel and use it to update the user interface.

Figure 32-2
A LiveData instance may also be declared as mutable, allowing the observing entity to update the underlying
value held within the LiveData object. The user might, for example, enter a value in the user interface that needs
to overwrite the value stored in the ViewModel.

Another of the key advantages of using LiveData is that it is aware of the lifecycle state of its observers. If,
for example, an activity contains a LiveData observer, the corresponding LiveData object will know when the
activity’s lifecycle state changes and respond accordingly. If the activity is paused (perhaps the app is put into the
background), the LiveData object will stop sending events to the observer. Suppose the activity has just started
or resumes after being paused. In that case, the LiveData object will send a LiveData event to the observer so
that the activity has the most up-to-date value. Similarly, the LiveData instance will know when the activity is
destroyed and remove the observer to free up resources.

So far, we’ve only talked about UI controllers using observers. In practice, however, an observer can be used
within any object that conforms to the Jetpack approach to lifecycle management.

32.6 ViewModel Saved State
Android allows the user to place an active app in the background and return to it after performing other tasks
on the device (including running other apps). When a device runs low on resources, the operating system will
rectify this by terminating background app processes, starting with the least recently used app. However, when
the user returns to the terminated background app, it should appear in the same state as when it was placed in
the background, regardless of whether it was terminated. In terms of the data associated with a ViewModel, this
can be implemented using the ViewModel Saved State module. This module allows values to be stored in the
app’s saved state and restored in case of system-initiated process termination. This topic will be covered later in
the “An Android ViewModel Saved State Tutorial” chapter.

32.7 LiveData and Data Binding
Android Jetpack includes the Data Binding Library, which allows data in a ViewModel to be mapped directly to
specific views within the XML user interface layout file. In the AndroidSample project created earlier, code had
to be written to obtain references to the EditText and TextView views and to set and get the text properties to

268

Modern Android App Architecture with Jetpack

reflect data changes. Data binding allows the LiveData value stored in the ViewModel to be referenced directly
within the XML layout file avoiding the need to write code to keep the layout views updated.

Figure 32-3
Data binding will be covered in greater detail, starting with the chapter “An Overview of Android Jetpack Data
Binding”.

32.8 Android Lifecycles
The duration from when an Android component is created to the point that it is destroyed is called the lifecycle.
During this lifecycle, the component will change between different lifecycle states, usually under the operating
system’s control and in response to user actions. An activity, for example, will begin in the initialized state before
transitioning to the created state. Once the activity runs, it will switch to the started state, from which it will cycle
through various states, including created, started, resumed, and destroyed.

Many Android Framework classes and components allow other objects to access their current state. Lifecycle
observers may also be used so that an object receives a notification when the lifecycle state of another object
changes. The ViewModel component uses this technique behind the scenes to identify when an observer
has restarted or been destroyed. This functionality is not limited to Android framework and architecture
components. It may also be built into any other classes using a set of lifecycle components included with the
architecture components.

Objects that can detect and react to lifecycle state changes in other objects are said to be lifecycle-aware. In
contrast, objects that provide access to their lifecycle state are called lifecycle owners. The chapter entitled
“Working with Android Lifecycle-Aware Components” will cover Lifecycles in greater detail.

32.9 Repository Modules
If a ViewModel obtains data from one or more external sources (such as databases or web services, it is important
to separate the code involved in handling those data sources from the ViewModel class. Failure to do this would,
after all, violate the separation of concerns guidelines. To avoid mixing this functionality with the ViewModel,
Google’s architecture guidelines recommend placing this code in a separate Repository module.

A repository is not an Android architecture component but a Java class created by the app developer that is
responsible for interfacing with the various data sources. The class then provides an interface to the ViewModel,
allowing that data to be stored in the model.

269

Modern Android App Architecture with Jetpack

Figure 32-4

32.10 Summary
Until recently, Google has tended not to recommend any particular approach to structuring an Android app.
That has now changed with the introduction of Android Jetpack, consisting of tools, components, libraries, and
architecture guidelines. Google now recommends that an app project be divided into separate modules, each
responsible for a particular area of functionality, otherwise known as “separation of concerns”.

In particular, the guidelines recommend separating the view data model of an app from the code responsible
for handling the user interface. In addition, the code responsible for gathering data from data sources such as
web services or databases should be built into a separate repository module instead of being bundled with the
view model.

Android Jetpack includes the Android Architecture Components, designed to make developing apps that
conform to the recommended guidelines easier. This chapter has introduced the ViewModel, LiveData, and
Lifecycle components. These will be covered in more detail, starting with the next chapter. Other architecture
components not mentioned in this chapter will be covered later in the book.

271

Chapter 33

33. An Android ViewModel Tutorial
The previous chapter introduced the fundamental concepts of Android Jetpack and outlined the basics of
modern Android app architecture. Jetpack defines a set of recommendations describing how an Android app
project should be structured while providing a set of libraries and components that make it easier to conform to
these guidelines to develop reliable apps with less coding and fewer errors.

To help reinforce and clarify the information provided in the previous chapter, this chapter will step through
creating an example app project that uses the ViewModel component. The next chapter will further enhance this
example by including LiveData and data binding support.

33.1 About the Project
In the chapter entitled “Creating an Example Android App in Android Studio”, a project named AndroidSample
was created in which all of the code for the app was bundled into the main Activity class file. In the following
chapter, an AVD emulator was created and used to run the app. While the app was running, we experienced
first-hand the problems that occur when developing apps in this way when the data displayed on a TextView
widget was lost during a device rotation.

This chapter will implement the same currency converter app, using the ViewModel component and following
the Google app architecture guidelines to avoid Activity lifecycle complications.

33.2 Creating the ViewModel Example Project
When the AndroidSample project was created, the Empty Views Activity template was chosen as the basis for
the project. However, the Basic Views Template template will be used for this project.

Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Basic Views Activity template before clicking on the Next button.

Enter ViewModelDemo into the Name field and specify com.ebookfrenzy.viewmodeldemo as the package name.
Before clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and
the Language menu to Java.

33.3 Removing Unwanted Project Elements
As outlined in the “A Guide to the Android Studio Layout Editor Tool”, the Basic Views Activity template includes
features not required by all projects. Before adding the ViewModel to the project, we first need to remove the
navigation features, the second content fragment, and the floating action button as follows:

1. Double-click on the activity_main.xml layout file in the Project tool window, select the floating action
button, and tap the keyboard delete key to remove the object from the layout.

2. Edit the MainActivity.java file and remove the floating action button code from the onCreate method as
follows:

@Override

protected void onCreate(Bundle savedInstanceState) {

.

.

272

An Android ViewModel Tutorial

 binding.fab.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 Snackbar.make(view, "Replace with your own action", Snackbar.LENGTH_
LONG)

 .setAnchorView(R.id.fab)

 .setAction("Action", null).show();

 }

 });

}

3. Within the Project tool window, navigate to and double-click on the app -> res -> navigation -> nav_graph.
xml file to load it into the navigation editor.

4. Within the editor, select the SecondFragment entry in the graph panel and tap the keyboard delete key to
remove it from the graph.

5. Locate and delete the SecondFragment.java and fragment_second.xml files.

6. The final task is to remove some code from the FirstFragment class so that the Button view no longer
navigates to the now non-existent second fragment when clicked. Edit the FirstFragment.java file and
remove the code from the onViewCreated() method so that it reads as follows:

public void onViewCreated(@NonNull View view, Bundle savedInstanceState) {

 super.onViewCreated(view, savedInstanceState);

 binding.buttonFirst.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 NavHostFragment.findNavController(FirstFragment.this)

 .navigate(R.id.action_FirstFragment_to_SecondFragment);

 }

 });

}

33.4 Designing the Fragment Layout
The next step is to design the layout of the fragment. First, locate the fragment_first.xml file in the Project tool
window and double-click on it to load it into the layout editor. Once the layout has loaded, select and delete
the existing Button, TextView, and ConstraintLayout components. Next, right-click on the NestedScrollView
instance in the Component Tree panel and select the Convert NestedScrollView to ConstraintLayout menu option
as shown in Figure 33-1, and accept the default settings in the resulting dialog:

273

An Android ViewModel Tutorial

Figure 33-1
Select the converted ConstraintLayout component and use the Attributes tool window to change the id to
constraintLayout.

Add a new TextView, position it in the center of the layout, and change the id to resultText. Next, drag a Number
(Decimal) view from the palette and position it above the existing TextView. With the view selected in the
layout, refer to the Attributes tool window and change the id to dollarText.

Drag a Button widget onto the layout to position it below the TextView, and change the text attribute to read
“Convert”. With the button still selected, change the id property to convertButton. At this point, the layout should
resemble that illustrated in Figure 33-2 (note that the three views have been constrained using a vertical chain):

Figure 33-2
Finally, click on the warning icon in the top right-hand corner of the layout editor and convert the hard-coded
strings to resources.

33.5 Implementing the View Model
With the user interface layout completed, the data model for the app needs to be created within the view model.
Begin by locating the com.ebookfrenzy.viewmodeldemo entry in the Project tool window, right-clicking on it, and
selecting the New -> Java Class menu option. Name the new class MainViewModel and press the keyboard enter

274

An Android ViewModel Tutorial

key. Edit the new class file so that it reads as follows:
package com.ebookfrenzy.viewmodeldemo.ui.main;

import androidx.lifecycle.ViewModel;

public class MainViewModel extends ViewModel {

 private static final Float rate = 0.74F;
 private String dollarText = "";
 private Float result = 0F;

 public void setAmount(String value) {
 this.dollarText = value;
 result = Float.parseFloat(dollarText)*rate;
 }

 public Float getResult()
 {
 return result;
 }
}

The class declares variables to store the current dollar string value and the converted amount together with
getter and setter methods to provide access to those data values. When called, the setAmount() method takes
the current dollar amount as an argument and stores it in the local dollarText variable. The dollar string value
is converted to a floating point number, multiplied by a fictitious exchange rate, and the resulting euro value is
stored in the result variable. The getResult() method, on the other hand, returns the current value assigned to
the result variable.

33.6 Associating the Fragment with the View Model
There needs to be some way for the fragment to obtain a reference to the ViewModel to access the model and
observe data changes. A Fragment or Activity maintains references to the ViewModels on which it relies for data
using an instance of the ViewModelProvider class.

A ViewModelProvider instance is created using the ViewModelProvider class from within the Fragment.
When called, the class initializer is passed a reference to the current Fragment or Activity and returns a
ViewModelProvider instance as follows:
ViewModelProvider viewModelProvider = new ViewModelProvider(this);

Once the ViewModelProvider instance has been created, an index value can be used to request a specific
ViewModel class. The provider will then either create a new instance of that ViewModel class or return an
existing instance, for example:
ViewModel viewModel = viewModelProvider.get(MainViewModel.class);

Edit the FirstFragment.java file and override the onCreate() method to set up the ViewModelProvider:
.

.

import androidx.lifecycle.ViewModelProvider;

275

An Android ViewModel Tutorial

import androidx.annotation.Nullable;
.

.

public class FirstFragment extends Fragment {

 private MainViewModel viewModel;
.

.

 @Override
 public void onCreate(@Nullable Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 viewModel = new ViewModelProvider(this).get(MainViewModel.class);
 }
.

.

With access to the model view, code can now be added to the Fragment to begin working with the data model.

33.7 Modifying the Fragment
The fragment class needs to be updated to react to button clicks and interact with the data values stored in the
ViewModel. The class will also need references to the three views in the user interface layout to react to button
clicks, extract the current dollar value, and display the converted currency amount.

In the chapter entitled “Creating an Example Android App in Android Studio”, the onClick property of the
Button widget was used to designate the method to be called when the user clicks the button. Unfortunately, this
property can only call methods on an Activity and cannot be used to call a method in a Fragment. To overcome
this limitation, we must add some code to the Fragment class to set up an onClick listener on the button. This
can be achieved in the onViewCreated() lifecycle method in the FirstFragment.java file as outlined below:
.

.

public class MainFragment extends Fragment {

 private MainViewModel viewModel;

.

.

 @Override

 public void onViewCreated(@NonNull View view, @Nullable Bundle
savedInstanceState) {

 super.onViewCreated(view, savedInstanceState);

 binding.convertButton.setOnClickListener(v -> {

 });
 }

.

.

}

276

An Android ViewModel Tutorial

With the listener added, any code placed within the onClick() method will be called whenever the user clicks
the button.

33.8 Accessing the ViewModel Data
When the button is clicked, the onClick() method needs to read the current value from the EditText view, confirm
that the field is not empty, and then call the setAmount() method of the ViewModel instance. The method will
then need to call the ViewModel’s getResult() method and display the converted value on the TextView widget.

Since LiveData has yet to be used in the project, it will also be necessary to get the latest result value from the
ViewModel each time the Fragment is created.

Remaining in the FirstFragment.java file, implement these requirements as follows in the onViewCreated()
method:
.

.

import java.util.Locale;
.

.

@Override

public void onViewCreated(@NonNull View view, @Nullable Bundle
savedInstanceState) {

 super.onViewCreated(view, savedInstanceState);

 binding.resultText.setText(String.format(Locale.ENGLISH,"%.2f",
 viewModel.getResult()));

 binding.convertButton.setOnClickListener(v -> {

 if (!binding.dollarText.getText().toString().equals("")) {
 viewModel.setAmount(String.format(Locale.ENGLISH,"%s",
 binding.dollarText.getText()));
 binding.resultText.setText(String.format(Locale.ENGLISH,"%.2f",
 viewModel.getResult()));
 } else {
 binding.resultText.setText("No Value");
 }
 });

}

33.9 Testing the Project
With this project development phase completed, build and run the app on the simulator or a physical device,
enter a dollar value, and click the Convert button. The converted amount should appear on the TextView,
indicating that the UI controller and ViewModel re-structuring is working as expected.

When the original AndroidSample app was run, rotating the device caused the value displayed on the resultText
TextView widget to be lost. Repeat this test now with the ViewModelDemo app and note that the current euro
value is retained after the rotation. This is because the ViewModel remained in memory as the Fragment was
destroyed and recreated, and code was added to the onViewCreated() method to update the TextView with the
result data value from the ViewModel each time the Fragment re-started.

277

An Android ViewModel Tutorial

While this is an improvement on the original AndroidSample app, much more can be done to simplify the
project by using LiveData and data binding, both of which are the topics of the next chapters.

33.10 Summary
In this chapter, we revisited the AndroidSample project created earlier in the book and created a new version
of the project structured to comply with the Android Jetpack architectural guidelines. The example project also
demonstrated the use of ViewModels to separate data handling from user interface-related code. Finally, the
chapter showed how the ViewModel approach avoids problems handling Fragment and Activity lifecycles.

285

Chapter 35

35. An Overview of Android Jetpack
Data Binding
In the chapter entitled “Modern Android App Architecture with Jetpack”, we introduced the concept of Android
Data Binding. We explained how it is used to directly connect the views in a user interface layout to the methods
and data located in other objects within an app without the need to write code. This chapter will provide more
details on data binding, emphasizing how data binding is implemented within an Android Studio project. The
tutorial in the next chapter (“An Android Jetpack Data Binding Tutorial”) will provide a practical example of data
binding in action.

35.1 An Overview of Data Binding
The Android Jetpack Data Binding Library provides data binding support, primarily providing a simple way to
connect the views in a user interface layout to the data stored within the app’s code (typically within ViewModel
instances). Data binding also provides a convenient way to map user interface controls, such as Button widgets,
to event and listener methods within other objects, such as UI controllers and ViewModel instances.

Data binding becomes particularly powerful when used in conjunction with the LiveData component. Consider,
for example, an EditText view bound to a LiveData variable within a ViewModel using data binding. When
connected in this way, any changes to the data value in the ViewModel will automatically appear within the
EditText view, and when using two-way binding, any data typed into the EditText will automatically be used
to update the LiveData value. Perhaps most impressive is that this can be achieved with no code beyond that
necessary to initially set up the binding.

Connecting an interactive view, such as a Button widget, to a method within a UI controller traditionally
required that the developer write code to implement a listener method to be called when the button is clicked.
Data binding makes this as simple as referencing the method to be called within the Button element in the layout
XML file.

35.2 The Key Components of Data Binding
An Android Studio project is not configured for data binding support by default. Several elements must be
combined before an app can begin using data binding. These involve the project build configuration, the
layout XML file, data binding classes, and the use of the data binding expression language. While this may
appear overwhelming at first, when taken separately, these are quite simple steps that, once completed, are
more than worthwhile in terms of saved coding effort. Each element will be covered in detail in the remainder
of this chapter. Once these basics have been covered, the next chapter will work through a detailed tutorial
demonstrating these steps.

35.2.1 The Project Build Configuration
Before a project can use data binding, it must be configured to use the Android Data Binding Library and to
enable support for data binding classes and the binding syntax. Fortunately, this can be achieved with just a few
lines added to the module level build.gradle.kts file (the one listed as build.gradle.kts (Module: app) under Gradle
Scripts in the Project tool window). The following lists a partial build file with data binding enabled:
.

286

An Overview of Android Jetpack Data Binding

.

android {

 buildFeatures {
 dataBinding = true
 }
.

.

35.2.2 The Data Binding Layout File
As we have seen in previous chapters, the user interfaces for an app are typically contained within an XML layout
file. Before the views contained within one of these layout files can take advantage of data binding, the layout file
must be converted to a data binding layout file.

As outlined earlier in the book, XML layout files define the hierarchy of components in the layout, starting with a
top-level or root view. Invariably, this root view takes the form of a layout container such as a ConstraintLayout,
FrameLayout, or LinearLayout instance, as is the case in the fragment_main.xml file for the ViewModelDemo
project:
<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/main"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".ui.main.MainFragment">

.

.

</androidx.constraintlayout.widget.ConstraintLayout>

To use data binding, the layout hierarchy must have a layout component as the root view, which, in turn, becomes
the parent of the current root view.

In the case of the above example, this would require that the following changes be made to the existing layout
file:
<?xml version="1.0" encoding="utf-8"?>

<layout xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/main"

 android:layout_width="match_parent"

287

An Overview of Android Jetpack Data Binding

 android:layout_height="match_parent"

 tools:context=".ui.main.MainFragment">

.

.

 </androidx.constraintlayout.widget.ConstraintLayout>

</layout>

35.2.3 The Layout File Data Element
The data binding layout file needs some way to declare the classes within the project to which the views in the
layout are to be bound (for example, a ViewModel or UI controller). Having declared these classes, the layout
file will need a variable name to reference those instances within binding expressions.

This is achieved using the data element, an example of which is shown below:
<?xml version="1.0" encoding="utf-8"?>

<layout xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 xmlns:android="http://schemas.android.com/apk/res/android">

 <data>
 <variable
 name="myViewModel"
 type="com.ebookfrenzy.myapp.ui.main.MainViewModel" />
 </data>

 <androidx.constraintlayout.widget.ConstraintLayout

 android:id="@+id/main"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".ui.main.MainFragment">

.

.

</layout>

The above data element declares a new variable named myViewModel of type MainViewModel (note that it is
necessary to declare the full package name of the MyViewModel class when declaring the variable).

The data element can import other classes that may then be referenced within binding expressions elsewhere in
the layout file. For example, if you have a class containing a method that needs to be called on a value before it
is displayed to the user, the class could be imported as follows:
<data>

 <import type="com.ebookfrenzy.MyFormattingTools" />

 <variable

 name="viewModel"

 type="com.ebookfrenzy.myapp.ui.main.MainViewModel" />

 </data>

288

An Overview of Android Jetpack Data Binding

35.2.4 The Binding Classes
For each class referenced in the data element within the binding layout file, Android Studio will automatically
generate a corresponding binding class. This subclass of the Android ViewDataBinding class will be named
based on the layout filename using word capitalization and the Binding suffix. Therefore, the binding class for a
layout file named fragment_main.xml file will be named FragmentMainBinding. The binding class contains the
bindings specified within the layout file and maps them to the variables and methods within the bound objects.

Although the binding class is generated automatically, code must be written to create an instance of the class
based on the corresponding data binding layout file. Fortunately, this can be achieved by making use of the
DataBindingUtil class.

The initialization code for an Activity or Fragment will typically set the content view or “inflate” the user
interface layout file. This means that the code opens the layout file, parses the XML, and creates and configures
all of the view objects in memory. In the case of an existing Activity class, the code to achieve this can be found
in the onCreate() method and will read as follows:
setContentView(R.layout.activity_main);

In the case of a Fragment, this takes place in the onCreateView() method:
return inflater.inflate(R.layout.fragment_main, container, false);

All that is needed to create the binding class instances within an Activity class is to modify this initialization
code as follows:
ActivityMainBinding binding;

binding = DataBindingUtil.setContentView(this, R.layout.activity_main, false);

In the case of a Fragment, the code would read as follows:
FragmentMainBinding binding;

binding = DataBindingUtil.inflate(

 inflater, R.layout.fragment_main, container, false);

binding.setLifecycleOwner(this);

View view = binding.getRoot();

return view;

35.2.5 Data Binding Variable Configuration
As outlined above, the data binding layout file contains the data element, which contains variable elements
consisting of variable names and the class types to which the bindings are to be established. For example:
<data>

 <variable

 name="viewModel"

 type="com.ebookfrenzy.viewmodeldemo.ui.main.MainViewModel" />

 <variable

 name="uiController"

 type="com.ebookfrenzy.viewmodeldemo_databinding.ui.main.MainFragment"
/>

</data>

289

An Overview of Android Jetpack Data Binding

In the above example, the first variable knows that it will be binding to an instance of a ViewModel class of type
MainViewModel but has yet to be connected to an actual MainViewModel object instance. This requires the
additional step of assigning the MainViewModel instance used within the app to the variable declared in the
layout file. This is performed via a call to the setVariable() method of the data binding instance, a reference to
which was obtained in the previous chapter:
MainViewModel mViewModel = new ViewModelProvider(this).get(MainViewModel.class);

binding.setVariable(viewModel, mViewModel);

The second variable in the above data element references a UI controller class in the form of a Fragment named
MainFragment. In this situation, the code within a UI controller (be it an Activity or Fragment) would need to
assign itself to the variable as follows:
binding.setVariable(uiController, this);

35.2.6 Binding Expressions (One-Way)
Binding expressions define how a particular view interacts with bound objects. For example, a binding expression
on a Button might declare which method on an object is called in response to a click. Alternatively, a binding
expression might define which data value stored in a ViewModel is to appear within a TextView and how it is to
be presented and formatted.

Binding expressions use a declarative language that allows logic and access to other classes and methods to
decide how bound data is used. Expressions can, for example, include mathematical expressions, method calls,
string concatenations, access to array elements, and comparison operations. In addition, all standard Java
language libraries are imported by default, so many things that can be achieved in Java can also be performed in
a binding expression. As already discussed, the data element may also be used to import custom classes to add
more capability to expressions.

A binding expression begins with an @ symbol followed by the expression enclosed in curly braces ({}).

Consider, for example, a ViewModel instance containing a variable named result. Assume that this class has been
assigned to a variable named viewModel within the data binding layout file and needs to be bound to a TextView
object so that the view always displays the latest result value. If this value were stored as a String object, this
would be declared within the layout file as follows:
<TextView

 android:id="@+id/resultText"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@{viewModel.result}"
 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

In the above XML, the text property is set to the value stored in the result LiveData property of the viewModel
object.

Consider, however, that the result is stored within the model as a Float value instead of a String. That being
the case, the above expression would cause a compilation error. Clearly, the Float value must be converted to a
string before the TextView can display it. To resolve issues such as this, the binding expression can include the
necessary steps to complete the conversion using the standard Java language classes:
android:text="@{String.valueOf(viewModel.result)}"

290

An Overview of Android Jetpack Data Binding

When running the app after making this change, it is important to be aware that the following warning may
appear in the Android Studio console:
warning: myViewModel.result.getValue() is a boxed field but needs to be un-boxed
to execute String.valueOf(viewModel.result.getValue()).

Values in Java can take the form of primitive values such as the boolean type (referred to as being unboxed) or
wrapped in a Java object such as the Boolean type and accessed via reference to that object (i.e., boxed). The
unboxing process involves unwrapping the primitive value from the object.

To avoid this message, wrap the offending operation in a safeUnbox() call as follows:
android:text="@{String.valueOf(safeUnbox(myViewModel.result))}"

String concatenation may also be used. For example, to include the word “dollars” after the result string value,
the following expression would be used:
android:text='@{String.valueOf(safeUnbox(myViewModel.result)) + " dollars"}'

Note that since the appended result string is wrapped in double quotes, the expression is now encapsulated with
single quotes to avoid syntax errors.

The expression syntax also allows ternary statements to be declared. In the following expression, the view will
display different text depending on whether or not the result value is greater than 10.
@{myViewModel.result > 10 ? "Out of range" : "In range"}

Expressions may also be constructed to access specific elements in a data array:
@{myViewModel.resultsArray[3]}

35.2.7 Binding Expressions (Two-Way)
The type of expression covered so far is called one-way binding. In other words, the layout is constantly updated
as the corresponding value changes, but changes to the value from within the layout do not update the stored
value.

A two-way binding, on the other hand, allows the data model to be updated in response to changes in the layout.
An EditText view, for example, could be configured with a two-way binding so that when the user enters a
different value, that value is used to update the corresponding data model value. When declaring a two-way
expression, the syntax is similar to a one-way expression except that it begins with @=. For example:
android:text="@={myViewModel.result}"

35.2.8 Event and Listener Bindings
Binding expressions may also trigger method calls in response to events on a view. A Button view, for example,
can be configured to call a method when clicked. In the chapter entitled “Creating an Example Android App in
Android Studio”, for example, the onClick property of a button was configured to call a method within the app’s
main activity named convertCurrency(). Within the XML file, this was represented as follows:
android:onClick="convertCurrency"

The convertCurrency() method was declared along the following lines:
public void convertCurrency(View view) {

.

.

}

Note that this type of method call is always passed a reference to the view on which the event occurred. The same
effect can be achieved in data binding using the following expression (assuming the layout has been bound to a

291

An Overview of Android Jetpack Data Binding

class with a variable name of uiController):
android:onClick="@{uiController::convertCurrency}"

Another option, and one which provides the ability to pass parameters to the method, is referred to as a listener
binding. The following expression uses this approach to call a method on the same viewModel instance with no
parameters:
android:onClick='@{() -> myViewModel.methodOne()}'

The following expression calls a method that expects three parameters:
android:onClick='@{() -> myViewModel.methodTwo(viewModel.result, 10, "A
String")}'

Binding expressions provide a rich and flexible language to bind user interface views to data and methods
in other objects. This chapter has only covered the most common use cases. To learn more about binding
expressions, review the Android documentation online at:
https://developer.android.com/topic/libraries/data-binding/expressions

35.3 Summary
Android data bindings provide a system for creating connections between the views in a user interface layout
and the data and methods of other objects within the app architecture without writing code. Once some initial
configuration steps have been performed, data binding involves using binding expressions within the view
elements of the layout file. These binding expressions can be either one-way or two-way and may also be used to
bind methods to be called in response to events such as button clicks within the user interface.

395

Chapter 47

47. Working with the RecyclerView
and CardView Widgets
The RecyclerView and CardView widgets work together to provide scrollable lists of information to the user in
which the information is presented as individual cards. Details of both classes will be covered in this chapter
before working through the design and implementation of an example project.

47.1 An Overview of the RecyclerView
Much like the ListView class outlined in the chapter entitled “Working with the Floating Action Button and
Snackbar”, the RecyclerView’s purpose is to allow information to be presented to the user as a scrollable list.
The RecyclerView, however, provides several advantages over the ListView. In particular, the RecyclerView is
significantly more efficient in managing the views that make up a list, reusing existing views that makeup list
items as they scroll off the screen instead of creating new ones (hence the name “recycler”). This increases the
performance and reduces the resources a list uses, a feature of particular benefit when presenting large amounts
of data to the user.

Unlike the ListView, the RecyclerView also provides a choice of three built-in layout managers to control how
the list items are presented to the user:

• LinearLayoutManager – The list items are presented as horizontal or vertical scrolling lists.

Figure 47-1
• GridLayoutManager – The list items are presented in grid format. This manager is best used when the list

items are of uniform size.

Figure 47-2
• StaggeredGridLayoutManager - The list items are presented in a staggered grid format. This manager is best

396

Working with the RecyclerView and CardView Widgets

used when the list items are of different sizes.

Figure 47-3
For situations where none of the three built-in managers provide the necessary layout, custom layout managers
may be implemented by subclassing the RecyclerView.LayoutManager class.

Each list item displayed in a RecyclerView is created as an instance of the ViewHolder class. The ViewHolder
instance contains everything necessary for the RecyclerView to display the list item, including the information
to be displayed and the view layout used to display the item.

As with the ListView, the RecyclerView depends on an adapter to act as the intermediary between the
RecyclerView instance and the data to be displayed to the user. The adapter is created as a subclass of the
RecyclerView.Adapter class and must, at a minimum, implement the following methods, which will be called at
various points by the RecyclerView object to which the adapter is assigned:

• getItemCount() – This method must return a count of the number of items to be displayed in the list.

• onCreateViewHolder() – This method creates and returns a ViewHolder object initialized with the view that
is to be used to display the data. This view is typically created by inflating the XML layout file.

• onBindViewHolder() – This method is passed the ViewHolder object created by the onCreateViewHolder()
method together with an integer value indicating the list item that is about to be displayed. Contained within
the ViewHolder object is the layout assigned by the onCreateViewHolder() method. The onBindViewHolder()
method is responsible for populating the views in the layout with the text and graphics corresponding to the
specified item and returning the object to the RecyclerView, where it will be presented to the user.

Adding a RecyclerView to a layout is a matter of adding the appropriate element to the XML content layout file
of the activity in which it is to appear. For example:
<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 app:layout_behavior="@string/appbar_scrolling_view_behavior"

 tools:context=".MainActivity"

 tools:showIn="@layout/activity_card_demo">

 <androidx.recyclerview.widget.RecyclerView
 android:id="@+id/recycler_view"

397

Working with the RecyclerView and CardView Widgets

 android:layout_width="0dp"
 android:layout_height="0dp"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 tools:listItem="@layout/card_layout" />

</androidx.constraintlayout.widget.ConstraintLayout>

.

.

The RecyclerView has been embedded into the CoordinatorLayout of a main activity layout file along with
the AppBar and Toolbar in the above example. This provides some additional features, such as configuring the
Toolbar and AppBar to scroll off the screen when the user scrolls up within the RecyclerView (a topic covered in
more detail in the chapter entitled “Working with the AppBar and Collapsing Toolbar Layouts”).

47.2 An Overview of the CardView
The CardView class is a user interface view that allows information to be presented in groups using a card
metaphor. Cards are usually presented in lists using a RecyclerView instance and may be configured to appear
with shadow effects and rounded corners. Figure 47-4, for example, shows three CardView instances configured
to display a layout consisting of an ImageView and two TextViews:

Figure 47-4
The user interface layout to be presented with a CardView instance is defined within an XML layout resource file
and loaded into the CardView at runtime. The CardView layout can contain a layout of any complexity using the
standard layout managers such as RelativeLayout and LinearLayout. The following XML layout file represents a
card view layout consisting of a RelativeLayout and a single ImageView. The card is configured to be elevated to
create a shadowing effect and to appear with rounded corners:
<?xml version="1.0" encoding="utf-8"?>

 <androidx.cardview.widget.CardView

 xmlns:card_view="http://schemas.android.com/apk/res-auto"

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/card_view"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_margin="5dp"

398

Working with the RecyclerView and CardView Widgets

 card_view:cardCornerRadius="12dp"

 card_view:cardElevation="3dp"

 card_view:contentPadding="4dp">

 <RelativeLayout

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:padding="16dp" >

 <ImageView

 android:layout_width="100dp"

 android:layout_height="100dp"

 android:id="@+id/item_image"

 android:layout_alignParentLeft="true"

 android:layout_alignParentTop="true"

 android:layout_marginRight="16dp" />

 </RelativeLayout>

</androidx.cardview.widget.CardView>

When combined with the RecyclerView to create a scrollable list of cards, the onCreateViewHolder() method of
the recycler view inflates the layout resource file for the card, assigns it to the ViewHolder instance and returns
it to the RecyclerView instance.

47.3 Summary
This chapter has introduced the Android RecyclerView and CardView components. The RecyclerView provides
a resource-efficient way to display scrollable lists of views within an Android app. The CardView is useful when
presenting groups of data (such as a list of names and addresses) in the form of cards. As previously outlined and
demonstrated in the tutorial contained in the next chapter, RecyclerView and CardView are particularly useful
when combined.

399

Chapter 48

48. An Android RecyclerView and
CardView Tutorial
This chapter will create an example project that uses both the CardView and RecyclerView components to create
a scrollable list of cards. The completed app will display a list of cards containing images and text. In addition
to displaying the list of cards, the project will be implemented such that selecting a card causes messages to be
displayed to the user indicating which card was tapped.

48.1 Creating the CardDemo Project
Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Basic Views Activity template before clicking on the Next button.

Enter CardDemo into the Name field and specify com.ebookfrenzy.carddemo as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java.

48.2 Modifying the Basic Views Activity Project
Since the Basic Views Activity was selected, the layout includes a floating action button which is not required for
this project. Load the activity_main.xml layout file into the Layout Editor tool, select the floating action button,
and tap the keyboard delete key to remove the object from the layout. Edit the MainActivity.java file and remove
the floating action button and navigation controller code from the onCreate method as follows:
@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 setContentView(binding.getRoot());

 setSupportActionBar(binding.toolbar);

 NavController navController =

 Navigation.findNavController(this, R.id.nav_host_fragment_content_main);

 appBarConfiguration =

 new AppBarConfiguration.Builder(navController.getGraph()).build();

 NavigationUI.setupActionBarWithNavController(this, navController,

 appBarConfiguration);

 binding.fab.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 Snackbar.make(view, "Replace with your own action", Snackbar.LENGTH_

400

An Android RecyclerView and CardView Tutorial

LONG)

 .setAction("Action", null).show();

 }

 });

}

Also, remove the onSupportNavigateUp() method, then open the content_main.xml file and delete the nav_host_
fragment_content_main object from the layout so that only the ConstraintLayout parent remains.

48.3 Designing the CardView Layout
The layout of the views contained within the cards will be defined within a separate XML layout file. Within
the Project tool window, right-click on the app -> res -> layout entry and select the New -> Layout Resource File
menu option. In the New Resource Dialog, enter card_layout into the File name: field and androidx.cardview.
widget.CardView into the root element field before clicking on the OK button.

Load the card_layout.xml file into the Layout Editor tool, switch to Code mode, and modify the layout so that
it reads as follows:
<?xml version="1.0" encoding="utf-8"?>

<androidx.cardview.widget.CardView

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"

 android:layout_height="wrap_content"
 android:id="@+id/card_view"
 android:layout_margin="5dp"
 app:cardBackgroundColor="#80B3EF"
 app:cardCornerRadius="12dp"
 app:cardElevation="3dp"
 app:contentPadding="4dp" >

 <androidx.constraintlayout.widget.ConstraintLayout
 android:id="@+id/relativeLayout"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:padding="16dp">

 <ImageView
 android:id="@+id/itemImage"
 android:layout_width="100dp"
 android:layout_height="100dp"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <TextView
 android:id="@+id/itemTitle"
 android:layout_width="236dp"

401

An Android RecyclerView and CardView Tutorial

 android:layout_height="39dp"
 android:layout_marginStart="16dp"
 android:textSize="30sp"
 app:layout_constraintLeft_toRightOf="@+id/itemImage"
 app:layout_constraintStart_toEndOf="@+id/itemImage"
 app:layout_constraintTop_toTopOf="parent" />

 <TextView
 android:id="@+id/itemDetail"
 android:layout_width="236dp"
 android:layout_height="16dp"
 android:layout_marginStart="16dp"
 android:layout_marginTop="8dp"
 app:layout_constraintLeft_toRightOf="@+id/itemImage"
 app:layout_constraintStart_toEndOf="@+id/itemImage"
 app:layout_constraintTop_toBottomOf="@+id/itemTitle" />
 </androidx.constraintlayout.widget.ConstraintLayout>
</androidx.cardview.widget.CardView>

48.4 Adding the RecyclerView
Select the content_main.xml layout file and drag a RecyclerView object from the Containers section of the palette
onto the layout so that it is positioned in the center of the screen, where it should automatically resize to fill the
entire screen. Use the Infer constraints toolbar button to add any missing layout constraints to the view. Using
the Attributes tool window, change the ID of the RecyclerView instance to recyclerView and the layout_width
and layout_height properties to match_constraint.

48.5 Adding the Image Files
In addition to the two TextViews, the card layout contains an ImageView on which the Recycler adapter has
been configured to display images. Before the project can be tested, these images must be added. The images that
will be used for the project are named android_image_<n>.jpg and can be found in the project_icons folder of
the sample code download available from the following URL:

https://www.ebookfrenzy.com/retail/giraffejava/index.php

Locate these images in the file system navigator for your operating system and select and copy the eight images.
Right click on the app -> res -> drawable entry in the Project tool window and select Paste to add the files to the
folder:

Figure 48-1

https://www.ebookfrenzy.com/retail/giraffejava/index.php

402

An Android RecyclerView and CardView Tutorial

48.6 Creating the RecyclerView Adapter
As outlined in the previous chapter, the RecyclerView needs to have an adapter to handle the creation of the
list items. Add this new class to the project by right-clicking on the app -> java -> com.ebookfrenzy.carddemo
entry in the Project tool window and selecting the New -> Java Class menu option. In the new class dialog, enter
RecyclerAdapter into the Name field and select Class from the list before tapping the Return keyboard key to
create the new Java class file.

Edit the new RecyclerAdapter.java file to add some import directives and to declare that the class now extends
RecyclerView.Adapter. Rather than create a separate class to provide the data to be displayed, some basic arrays
will also be added to the adapter to act as the data for the app:
package com.ebookfrenzy.carddemo;

import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ImageView;
import android.widget.TextView;

import androidx.annotation.NonNull;
import androidx.recyclerview.widget.RecyclerView;

public class RecyclerAdapter extends RecyclerView.Adapter<RecyclerAdapter.
ViewHolder> {

 final private String[] titles = {"Chapter One",
 "Chapter Two",
 "Chapter Three",
 "Chapter Four",
 "Chapter Five",
 "Chapter Six",
 "Chapter Seven",
 "Chapter Eight"};

 final private String[] details = {"Item one details",
 "Item two details", "Item three details",
 "Item four details", "Item five details",
 "Item six details", "Item seven details",
 "Item eight details"};

 final private int[] images = { R.drawable.android_image_1,
 R.drawable.android_image_2,
 R.drawable.android_image_3,
 R.drawable.android_image_4,
 R.drawable.android_image_5,
 R.drawable.android_image_6,
 R.drawable.android_image_7,

403

An Android RecyclerView and CardView Tutorial

 R.drawable.android_image_8 };
}

Within the RecyclerAdapter class, we now need our own implementation of the ViewHolder class configured
to reference the view elements in the card_layout.xml file. Remaining within the RecyclerAdapter.java, file
implement this class as follows:
public class RecyclerAdapter extends RecyclerView.Adapter<RecyclerAdapter.
ViewHolder> {

.

.

 static class ViewHolder extends RecyclerView.ViewHolder {

 ImageView itemImage;
 TextView itemTitle;
 TextView itemDetail;

 ViewHolder(View itemView) {
 super(itemView);
 itemImage = itemView.findViewById(R.id.itemImage);
 itemTitle = itemView.findViewById(R.id.itemTitle);
 itemDetail = itemView.findViewById(R.id.itemDetail);
 }
 }

}

The ViewHolder class contains an ImageView and two TextView variables together with a constructor method
that initializes those variables with references to the three view items in the card_layout.xml file.

The next item to be added to the RecyclerAdapter.java file is the implementation of the onCreateViewHolder()
method:
@NonNull

@Override

public ViewHolder onCreateViewHolder(ViewGroup viewGroup, int i) {

 View v = LayoutInflater.from(viewGroup.getContext())

 .inflate(R.layout.card_layout, viewGroup, false);

 return new ViewHolder(v);

}

This method will be called by the RecyclerView to obtain a ViewHolder object. It inflates the view hierarchy
card_layout.xml file and creates an instance of our ViewHolder class initialized with the view hierarchy before
returning it to the RecyclerView.

The purpose of the onBindViewHolder() method is to populate the view hierarchy within the ViewHolder object
with the data to be displayed. It is passed the ViewHolder object and an integer value indicating the list item that
is to be displayed. This method should now be added, using the item number as an index into the data arrays.
This data is then displayed on the layout views using the references created in the constructor method of the
ViewHolder class:
@Override

public void onBindViewHolder(ViewHolder viewHolder, int i) {

404

An Android RecyclerView and CardView Tutorial

 viewHolder.itemTitle.setText(titles[i]);

 viewHolder.itemDetail.setText(details[i]);

 viewHolder.itemImage.setImageResource(images[i]);

}

The final requirement for the adapter class is an implementation of the getItem() method which, in this case,
returns the number of items in the titles array:
@Override

public int getItemCount() {

 return titles.length;

}

48.7 Initializing the RecyclerView Component
At this point, the project consists of a RecyclerView instance, an XML layout file for the CardView instances and
an adapter for the RecyclerView. The last step before testing the progress so far is to initialize the RecyclerView
with a layout manager, create an instance of the adapter and assign that instance to the RecyclerView object.
For the purposes of this example, the RecyclerView will be configured to use the LinearLayoutManager layout
option.

There is a slight complication here because we need to be able to use view binding to access the recyclerView
component from within the MainActivity class. The problem is that recyclerView is contained within the
content_main.xml layout file which is, in turn, included in the activity_main.xml file. To be able to reach down
into the content_main.xml file, we need to assign it an id at the point that it is included. To do this, edit the
activity_main.xml file and modify the include element so that it reads as follows:
.

.

 <include

 android:id="@+id/contentMain"
 layout="@layout/content_main" />

.

.

With an id assigned to the included file, the recyclerView component can be accessed using the following
binding:
binding.contentMain.recyclerView

Now edit the MainActivity.java file and modify the onCreate() method to implement the initialization code:
package com.ebookfrenzy.carddemo;

.

.

import androidx.recyclerview.widget.LinearLayoutManager;
import androidx.recyclerview.widget.RecyclerView;
.

.
public class MainActivity extends AppCompatActivity {

 private RecyclerView recyclerView;
 private RecyclerView.LayoutManager layoutManager;

405

An Android RecyclerView and CardView Tutorial

 private RecyclerView.Adapter adapter;
.
.
 @Override

 protected void onCreate(Bundle savedInstanceState) {

.

.

 setSupportActionBar(toolbar);

 layoutManager = new LinearLayoutManager(this);
 binding.contentMain.recyclerView.setLayoutManager(layoutManager);

 adapter = new RecyclerAdapter();
 binding.contentMain.recyclerView.setAdapter(adapter);
 }
.

.

}

48.8 Testing the Application
Compile and run the app on a physical device or emulator session and scroll through the different card items
in the list:

Figure 48-2
When building the project, you may encounter an error that reads in part:
Duplicate class kotlin.collections.jdk8.CollectionsJDK8Kt found in modules
kotlin-stdlib

This error is caused by a bug in the Android Studio build toolchain and can be resolved by making the following
changes to the build.gradle.kts (Module: app) file:

406

An Android RecyclerView and CardView Tutorial

dependencies {

.

.

 implementation(platform("org.jetbrains.kotlin:kotlin-bom:1.8.0"))
.

.

}

48.9 Responding to Card Selections
The last phase of this project is to make the cards in the list selectable so that clicking on a card triggers an event
within the app. For this example, the cards will be configured to present a message on the display when tapped
by the user. To respond to clicks, the ViewHolder class needs to be modified to assign an onClickListener on
each item view. Edit the RecyclerAdapter.java file and modify the ViewHolder class declaration so that it reads
as follows:
.
.
import com.google.android.material.snackbar.Snackbar;
.

.

class ViewHolder extends RecyclerView.ViewHolder{

 ImageView itemImage;

 TextView itemTitle;

 TextView itemDetail;

 ViewHolder(View itemView) {

 super(itemView);

 itemImage = itemView.findViewById(R.id.item_image);

 itemTitle = itemView.findViewById(R.id.item_title);

 itemDetail = itemView.findViewById(R.id.item_detail);

 itemView.setOnClickListener(new View.OnClickListener() {
 @Override public void onClick(View v) {

 }
 });
 }

}

Within the body of the onClick handler, code can now be added to display a message indicating that the card
has been clicked. Given that the actions performed as a result of a click will likely depend on which card was
tapped, it is also important to identify the selected card. This information can be obtained via a call to the
getAdapterPosition() method of the RecyclerView.ViewHolder class. Remaining within the RecyclerAdapter.java
file, add code to the onClick handler so it reads as follows:
@override

public void onClick(View v) {

407

An Android RecyclerView and CardView Tutorial

 int position = getAdapterPosition();

 Snackbar.make(v, "Click detected on item " + (position + 1),
 Snackbar.LENGTH_LONG)
 .setAction("Action", null).show();
 }

});

The last task is to enable the material design ripple effect that appears when items are tapped within Android
applications. This involves the addition of some properties to the declaration of the CardView instance in the
card_layout.xml file as follows:
<?xml version="1.0" encoding="utf-8"?>

<androidx.cardview.widget.CardView

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:card_view="http://schemas.android.com/apk/res-auto"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:id="@+id/card_view"

 android:layout_margin="5dp"

 app:cardBackgroundColor="#80B3EF"

 app:cardCornerRadius="12dp"

 app:cardElevation="3dp"

 app:contentPadding="4dp"

 android:foreground="?selectableItemBackground"
 android:clickable="true" >

Run the app once again and verify that tapping a card in the list triggers both the standard ripple effect at the
point of contact and the appearance of a Snackbar reporting the number of the selected item.

48.10 Summary
This chapter has worked through the steps involved in combining the CardView and RecyclerView components
to display a scrollable list of card-based items. The example also covered the detection of clicks on list items,
including the identification of the selected item and the enabling of the ripple effect visual feedback on the
tapped CardView instance.

435

Chapter 52

52. An Overview of Android Services
The Android Service class is designed to allow applications to initiate and perform background tasks. Unlike
broadcast receivers, which are intended to perform a task quickly and then exit, services are designed to perform
tasks that take a long time to complete (such as downloading a file over an internet connection or streaming
music to the user) but do not require a user interface.

This chapter will provide an overview of the services available, including bound and intent services. Once these
basics have been covered, subsequent chapters will work through some examples of services in action.

52.1 Intent Service
As previously outlined, services run by default within the same main thread as the component from which they
are launched. As such, any CPU-intensive tasks that need to be performed by the service should occur within a
new thread, thereby avoiding impacting the performance of the calling application.

The JobIntentService class is a convenience class (subclassed from the Service class) that sets up a worker
thread for handling background tasks and handles each request asynchronously. Once the service has handled
all queued requests, it exits. All that is required when using the JobIntentService class is to implement the
onHandleWork() method, containing the code to be executed for each request.

For services that do not require synchronous processing of requests, JobIntentService is the recommended
option. However, services requiring synchronous handling of requests will need to subclass from the Service
class and manually implement and manage threading to handle any CPU-intensive tasks efficiently.

52.2 Bound Service
A bound service allows a launching component to interact with and receive results from the service. This
interaction can also occur across process boundaries through the implementation of interprocess communication
(IPC). An activity might, for example, start a service to handle audio playback. The activity will, in all probability,
include a user interface providing controls to the user to pause playback or skip to the next track. Similarly, the
service will likely need to communicate information to the calling activity to indicate that the current audio
track has ended and provide details of the next track that is about to start playing.

A component (referred to in this context as a client) starts and binds to a bound service via a call to the
bindService() method. Also, multiple components may bind to a service simultaneously. When a client no longer
requires the service binding, a call should be made to the unbindService() method. When the last bound client
unbinds from a service, the Android runtime system will terminate the service. It is important to remember that
a bound service may also be started via a call to startService(). Once started, components may then bind to it
via bindService() calls. When a bound service is launched via a call to startService(), it will continue to run even
after the last client unbinds from it.

A bound service must include an implementation of the onBind() method, which is called both when the service
is initially created and when other clients subsequently bind to the running service. The purpose of this method
is to return to binding clients an object of type IBinder containing the information needed by the client to
communicate with the service.

When implementing the communication between a client and a bound service, the recommended technique
depends on whether the client and service reside in the same or different processes and whether or not the service

436

An Overview of Android Services

is private to the client. Local communication can be achieved by extending the Binder class and returning an
instance from the onBind() method. Interprocess communication, on the other hand, requires Messenger and
Handler implementation. Details of both of these approaches will be covered in later chapters.

52.3 The Anatomy of a Service
As has already been mentioned, a service must be created as a subclass of the Android Service class (more
specifically, android.app.Service) or a sub-class thereof (such as android.app.IntentService). As part of the
subclassing procedure, one or more of the following superclass callback methods must be overridden, depending
on the exact nature of the service being created:

• onStartCommand() – This method is called when another component starts the service via a call to the
startService() method. This method does not need to be implemented for bound services.

• onBind() – Called when a component binds to the service via a call to the bindService() method. When
implementing a bound service, this method must return an IBinder object facilitating communication with
the client.

• onCreate() – Intended as a location to perform initialization tasks, this method is called immediately before
the call to either onStartCommand() or the first call to the onBind() method.

• onDestroy() – Called when the service is being destroyed.

• onHandleWork() – Applies only to JobIntentService subclasses. This method is called to handle the processing
for the service. It is executed in a separate thread from the main application.

Note that the IntentService class includes its own implementations of the onStartCommand() and onBind()
callback methods, so these do not need to be implemented in subclasses.

52.4 Controlling Destroyed Service Restart Options
The onStartCommand() callback method is required to return an integer value to define what should happen
with regard to the service if the Android runtime system destroys it. Possible return values for these methods
are as follows:

• START_NOT_STICKY – Indicates to the system that the service should not be restarted if it is destroyed
unless there are pending intents awaiting delivery.

• START_STICKY – Indicates that the service should be restarted as soon as possible after it has been destroyed
if the destruction occurred after the onStartCommand() method returned. If no pending intents are waiting
to be delivered, the onStartCommand() callback method is called with a NULL intent value. The intent being
processed when the service was destroyed is discarded.

• START_REDELIVER_INTENT – Indicates that if the service was destroyed after returning from the
onStartCommand() callback method, the service should be restarted with the current intent redelivered to the
onStartCommand() method followed by any pending intents.

52.5 Declaring a Service in the Manifest File
For a service to be usable, it must first be declared within a manifest file. This involves embedding an appropriately
configured <service> element into an existing <application> entry. At a minimum, the <service> element must
contain a property declaring the class name of the service, as illustrated in the following XML fragment:
.

.

 <application

437

An Overview of Android Services

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name" >

 <activity

 android:label="@string/app_name"

 android:name=".MainActivity" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <service android:name=".MyService>
 </service>
 </application>

</manifest>

By default, services are declared public in that they can be accessed by components outside the application
package in which they reside. To make a service private, the android:exported property must be declared as false
within the <service> element of the manifest file. For example:
<service android:name="MyService"

 android:exported="false">
</service>

When working with JobIntentService, the manifest Service declaration must also request the BIND_JOB_
SERVICE permission as follows:
<service

 android:name=".MyJobIntentService"

 android:permission="android.permission.BIND_JOB_SERVICE" />

As previously discussed, services run within the same process as the calling component by default. To force a
service to run within its own process, add an android:process property to the <service> element, declaring a
name for the process prefixed with a colon (:):
<service android:name=".MyService"

android:exported="false"

android:process=":myprocess">
</service>

The colon prefix indicates that the new process is private to the local application. If the process name begins
with a lowercase letter instead of a colon, however, the process will be global and available for use by other
components.

Finally, using the same intent filter mechanisms outlined for activities, a service may also advertise capabilities
to other applications running on the device. For more details on intent filters, refer to the chapter “An Overview
of Android Intents”.

52.6 Starting a Service Running on System Startup
Given the background nature of services, it is not uncommon for a service to need to be started when an
Android-based system first boots up. This can be achieved by creating a broadcast receiver with an intent filter
configured to listen for the system android.intent.action.BOOT_COMPLETED intent. When such an intent is
detected, the broadcast receiver would invoke the necessary service and then return. Note that, to function, such

438

An Overview of Android Services

a broadcast receiver must request the android.permission.RECEIVE_BOOT_COMPLETED permission.

52.7 Summary
Android services are a powerful mechanism that allows applications to perform tasks in the background. A
service, once launched, will continue to run regardless of whether the calling application is the foreground task
or not and even if the component that initiated the service is destroyed.

Services are subclassed from the Android Service class. Bound services provide a communication interface to
other client components and generally run until the last client unbinds from the service.

By default, services run locally within the same process and main thread as the calling application. A new thread
should, therefore, be created within the service to handle CPU-intensive tasks. Remote services may be started
within a separate process by making a minor configuration change to the corresponding <service> entry in the
application manifest file.

The IntentService class (a subclass of the Android Service class) provides a convenient mechanism for handling
asynchronous service requests within a separate worker thread.

439

Chapter 53

53. An Overview of Android Intents
By this stage of the book, it should be clear that Android applications comprise one or more activities, among
other things. However, an area that has yet to be covered in extensive detail is the mechanism by which one
activity can trigger the launch of another activity. As outlined briefly in the chapter entitled “The Anatomy of an
Android Application”, this is achieved primarily using Intents.

Before working through some Android Studio-based example implementations of intents in the following
chapters, this chapter aims to provide an overview of intents in the form of explicit intents and implicit intents,
together with an introduction to intent filters.

53.1 An Overview of Intents
Intents (android.content.Intent) are the messaging system by which one activity can launch another activity. An
activity can, for example, issue an intent to request the launch of another activity contained within the same
application. Intents also go beyond this concept by allowing an activity to request the services of any other
appropriately registered activity on the device for which permissions are configured. Consider, for example, an
activity contained within an application that requires a web page to be loaded and displayed to the user. Rather
than the application having to contain a second activity to perform this task, the code can send an intent to the
Android runtime requesting the services of any activity that has registered the ability to display a web page. The
runtime system will match the request to available activities on the device and either launch the activity that
matches or, in the event of multiple matches, allow the user to decide which activity to use.

Intents also allow data transfer from the sending to the receiving activity. In the previously outlined scenario, for
example, the sending activity would need to send the URL of the web page to be displayed to the second activity.
Similarly, the receiving activity may be configured to return data to the sending activity when the required tasks
are completed.

Though not covered until later chapters, it is also worth highlighting that, in addition to launching activities,
intents are also used to launch and communicate with services and broadcast receivers.

Intents are categorized as either explicit or implicit.

53.2 Explicit Intents
An explicit intent requests the launch of a specific activity by referencing the target activity’s component name
(which is the class name). This approach is most common when launching an activity residing in the same
application as the sending activity (since the class name is known to the developer).

An explicit intent is issued by creating an instance of the Intent class, passing through the activity context and
the component name of the activity to be launched. A call is then made to the startActivity() method, passing
the intent object as an argument. For example, the following code fragment issues an intent for the activity with
the class name ActivityB to be launched:
Intent i = new Intent(this, ActivityB.class);

startActivity(i);

Data may be transmitted to the receiving activity by adding it to the intent object before it is started via calls to
the putExtra() method of the intent object. Data must be added in the form of key-value pairs. The following
code extends the previous example to add String and integer values with the keys “myString” and “myInt”

440

An Overview of Android Intents

respectively, to the intent:
Intent i = new Intent(this, ActivityB.class);

i.putExtra("myString", "This is a message for ActivityB");

i.putExtra("myInt", 100);

startActivity(i);

The target activity receives the data as part of a Bundle object which can be obtained via a call to getIntent().
getExtras(). The getIntent() method of the Activity class returns the intent that started the activity, while the
getExtras() method (of the Intent class) returns a Bundle object containing the data. For example, to extract the
data values passed to ActivityB:
Bundle extras = getIntent().getExtras();

if (extras != null) {

 String myString = extras.getString("myString");

 int myInt = extras.getInt("myInt");

}

When using intents to launch other activities within the same application, those activities must be listed in the
application manifest file. The following AndroidManifest.xml contents are correctly configured for an application
containing activities named ActivityA and ActivityB:
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.intent1.intent1" >

 <application

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name" >

 <activity

 android:label="@string/app_name"

 android:name="com.ebookfrenzy.intent1.intent1.ActivityA" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <activity

 android:name="ActivityB"

 android:label="ActivityB" >

 </activity>

 </application>

</manifest>

53.3 Returning Data from an Activity
As the example in the previous section stands, while data is transferred to ActivityB, there is no way for data to be
returned to the first activity (which we will call ActivityA). This can, however, be achieved by launching ActivityB
as a sub-activity of ActivityA. An activity is started as a sub-activity by creating an ActivityResultLauncher
instance. An ActivityResultLauncher instance is created by a call to the registerForActivityResult() method and is

441

An Overview of Android Intents

passed a callback handler in the form of a lambda. This handler will be called and passed return data when the
sub-activity returns. Once an ActivityResultLauncher instance has been created, it can be called with an intent
parameter to launch the sub-activity. The code to create an ActivityResultLauncher instance typically reads as
follows:
ActivityResultLauncher<Intent> startForResult = registerForActivityResult(

 new ActivityResultContracts.StartActivityForResult(),

 new ActivityResultCallback<ActivityResult>() {

 @Override

 public void onActivityResult(ActivityResult result) {

 if (result.getResultCode() == Activity.RESULT_OK) {

 Intent data = result.getData();

 // Code to handle returned data

 }

 }

 });

Once the launcher is ready, it can be called and passed the intent to be launched as follows:
Intent i = new Intent(this, ActivityB.class);

.

.

startForResult.launch(i);

To return data to the parent activity, the sub-activity must implement the finish() method, the purpose of which
is to create a new intent object containing the data to be returned and then call the setResult() method of the
enclosing activity, passing through a result code and the intent containing the return data. The result code is
typically RESULT_OK, or RESULT_CANCELED, but it may also be a custom value subject to the developer’s
requirements. If a sub-activity crashes, the parent activity will receive a RESULT_CANCELED result code.

The following code, for example, illustrates the code for a typical sub-activity finish() method:
public void finish() {

 Intent data = new Intent();

 data.putExtra("returnString1", "Message to parent activity");

 setResult(RESULT_OK, data);

 super.finish();

}

53.4 Implicit Intents
Unlike explicit intents, which reference the class name of the activity to be launched, implicit intents identify
the activity to be launched by specifying the action to be performed and the type of data to be handled by the
receiving activity. For example, an action type of ACTION_VIEW accompanied by the URL of a web page in the
form of a URI object will instruct the Android system to search for and, subsequently, launch a web browser-
capable activity. The following implicit intent will, when executed on an Android device, result in the designated
web page appearing in a web browser activity:
Intent intent = new Intent(Intent.ACTION_VIEW,

 Uri.parse("https://www.ebookfrenzy.com"));

startActivity(intent);

442

An Overview of Android Intents

When an activity issues the above implicit intent, the Android system will search for activities on the device that
have registered the ability to handle ACTION_VIEW requests on HTTP scheme data using a process referred
to as intent resolution. Before the system launches an activity using an implicit intent, the user must either verify
or enable that activity. If neither of these conditions has been met, the activity will not be launched by the intent.
Before exploring these two options, we first need to talk about intent filters.

53.5 Using Intent Filters
Intent filters are the mechanism by which activities “advertise” supported actions and data handling capabilities
to the Android intent resolution process. These declarations also include the settings required to perform the
link verification process. The following AndroidManifest.xml file illustrates a configuration for an activity named
WebActivity within an app named MyWebView with an appropriately configured intent filter:
<?xml version="1.0" encoding="utf-8"?>

.

.

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:roundIcon="@mipmap/ic_launcher_round"

 android:supportsRtl="true"

 android:theme="@style/Theme.MyWebView">

 <activity

 android:name="WebActivity"

 android:exported="true">

 <intent-filter android:autoVerify="true">
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.BROWSABLE" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:scheme="https" />
 <data android:host="www.ebookfrenzy.com"/>
 </intent-filter>
 </activity>

 </application>

</manifest>

This manifest file configures the WebActivity activity to be launched in response to an implicit intent from
another activity when the intent contains the https://www.ebookfrenzy.com URL. The following code, for example,
would launch the WebActivity activity (assuming that the MyWebView app has been verified or enabled by the
user as a support link):
Intent intent = new Intent(Intent.ACTION_VIEW,

 Uri.parse("https://www.ebookfrenzy.com"));

startActivity(intent);

53.6 Automatic Link Verification
Using a web link to launch an activity on an Android device is considered a potential security hazard. To
minimize this risk, the link used to launch an intent must either be automatically verified or manually added as a

443

An Overview of Android Intents

supported link on the device by the user. To enable automatic verification, the corresponding intent declaration
in the target activity must set autoVerify to true as follows:
<intent-filter android:autoVerify="true">
.

.

</intent-filter>

Next, the link URL must be associated with the website on which the app link is based. This is achieved by
creating a Digital Assets Link file named assetlinks.json and installing it within the website’s .well-known folder.

A digital asset link file comprises a relation statement granting permission for a target app to be launched
using the website’s link URLs and a target statement declaring the companion app package name and SHA-256
certificate fingerprint for that project. A typical asset link file might, for example, read as follows:
[{

 "relation": ["delegate_permission/common.handle_all_urls"],

 "target": {

 "namespace": "android_app",

 "package_name": "com.ebookfrenzy.mywebview",

 "sha256_cert_fingerprints":

 ["<your certificate fingerprint here>"]

 }

}]

Note that you can either create this file manually or generate it using the online tool available at the following
URL:

https://developers.google.com/digital-asset-links/tools/generator

When working with Android, the namespace value is always set to “android_app”, while the package name
corresponds to the app package to be launched by the intent. Finally, the certificate fingerprint is the hash code
used to build the app. When you are testing an app, this will be the debug certificate contained within the debug.
keystore file. On Windows systems, Android Studio stores this file at the following location:
\Users\<your user name>\.android\debug.keystore

On macOS and Linux systems, the file can be found at:
$HOME/.android/debug.keystore

Once you have located the file, the SHA 256 fingerprint can be obtained by running the following command in
a terminal or command prompt window:
keytool -list -v -keystore <path to debug.keystore file here>

When prompted for a password, enter “android” after which output will appear, including the SHA 256
fingerprint:
Certificate fingerprints:

 SHA1: 11:E8:66:11:B6:94:3D:AA:7E:50:63:99:77:B8:6A:90:FF:B6:9C:6D

 SHA256: 7F:EE:E3:C8:38:41:C3:EA:11:56:83:94:2A:4C:D2:EA:A0:69:F8:96:D1:17
:77:02:46:EC:AD:6E:3C:64:A9:29

When you are ready to build your app’s release version, you must ensure you add the release SHA 256 fingerprint
to the asset file. Details on generating release keystore files are covered in the chapter entitled “Creating, Testing,
and Uploading an Android App Bundle”. Once you have a release keystore file, run the above keytool command

https://developers.google.com/digital-asset-links/tools/generator

444

An Overview of Android Intents

to access the fingerprint.

Once you have placed the digital asset file in the correct location on the website, install the app on a device or
emulator and wait 30 seconds for the link to be verified. To check the verification status, run the following at a
command or terminal prompt:
adb shell pm get-app-links --user cur com.example.mywebview

The resulting output should include confirmation that the link has been verified:
com.example.mywebview:

 ID: 0e399bca-bf58-4cfc-8c7b-d1a6c3b065ec

 Signatures: [7F:EE:E3:C8:38:41:C3:EA:11:56:83:94:2A:4C:D2:EA:A0:69:F8:96:D1:1
7:77:02:46:EC:AD:6E:3C:64:A9:29]

 Domain verification state:
 www.ebookfrenzy.com: verified
 User 0:

 Verification link handling allowed: true

 Selection state:

 Disabled:

 www.ebookfrenzy.com

You can also check the status from within the Settings app on the device or emulator using the following steps:

1. Launch the Settings app.

2. Select Apps from the main list.

3. Locate and select your app from the list of installed apps.

4. On the settings page for your app, choose the Open by Default option.

Choose the Open by Default option on your app’s settings page.

Once displayed, the page should indicate that a link has been verified, as shown in Figure 53-1:

Figure 53-1

445

An Overview of Android Intents

To review which links have been verified, tap on the info button indicated by the arrow in the above figure to
display the following panel:

Figure 53-2
The assetlinks.json file can contain multiple digital asset links, allowing a single website to be associated with
more than one app. If you cannot use auto link verification, add code to your app to prompt the user to enable
the link manually.

53.7 Manually Enabling Links
Where it is not possible to auto-verify links using the steps outlined above, the only option is to request that the
user manually enable app links. This involves launching the Open by Default screen of the Settings app for the
target app where the user can enable the link.

Since the sudden appearance of the Open by Default screen may be confusing to the average user, it is
recommended that an explanatory dialog be displayed before launching the Settings app.

To provide the user with the option to enable a link manually, the following code needs to be executed before
attempting to launch the intent:
.

.

// Code here to display a dialog explaining that the link needs to be enabled

.

.

Intent intent = new Intent(

 Settings.ACTION_APP_OPEN_BY_DEFAULT_SETTINGS,

 Uri.parse("package:com.ebookfrenzy.mywebview"));

startActivity(intent);

The above example code will display the Open by Default settings screen for our target MyWebView app, where
the user can click on the Add Link button:

446

An Overview of Android Intents

Figure 53-3
Once clicked, a dialog will appear initialized with the link passed in the intent. This can be enabled by setting
the checkbox as shown in Figure 53-4:

Figure 53-4

53.8 Checking Intent Availability
It is generally unwise to assume that an activity will be available for a particular intent, especially since the
absence of a matching action typically results in the application crashing. Fortunately, it is possible to identify
the availability of an activity for a specific intent before it is sent to the runtime system. The following method
can be used to identify the availability of an activity for a specified intent action type:
public static boolean isIntentAvailable(Context context, String action) {

 final PackageManager packageManager = context.getPackageManager();

 final Intent intent = new Intent(action);

 List<ResolveInfo> list =

447

An Overview of Android Intents

 packageManager.queryIntentActivities(intent,

 PackageManager.MATCH_DEFAULT_ONLY);

 return list.size() > 0;

}

53.9 Summary
Intents are the messaging mechanism by which one Android activity can launch another. An explicit intent
references a specific activity to be launched by referencing the receiving activity by class name. Explicit intents
are typically, though not exclusively, used when launching activities within the same application. An implicit
intent specifies the action to be performed and the type of data to be handled and lets the Android runtime
find a matching activity to launch. Implicit intents are generally used when launching activities that reside in
different applications.

When working with implicit intents, security restrictions require the user to automatically verify or manually
enable the app containing the intent activity target before launching the intent. Automatic verification involves
the placement of a Digital Assets Link file on the website corresponding to the link URL.

An activity can send data to the receiving activity by bundling data into the intent object as key-value pairs. Data
can only be returned from an activity if it is started as a sub-activity of the sending activity.

Activities advertise capabilities to the Android intent resolution process by specifying intent filters in the
application manifest file. Both sending and receiving activities must also request appropriate permissions to
perform tasks such as accessing the device contact database or the internet.

Having covered the theory of intents, the next few chapters will work through creating some examples in
Android Studio that put both explicit and implicit intents into action.

621

Chapter 73

73. Android Audio Recording and
Playback using MediaPlayer and
MediaRecorder
This chapter will provide an overview of the MediaRecorder class and explain how this class can be used to
record audio or video. The use of the MediaPlayer class to play back audio will also be covered. Having covered
the basics, an example application will be created to demonstrate these techniques. In addition to looking at
audio and video handling, this chapter will also touch on saving files to the SD card.

73.1 Playing Audio
In terms of audio playback, most implementations of Android support AAC LC/LTP, HE-AACv1 (AAC+), HE-
AACv2 (enhanced AAC+), AMR-NB, AMR-WB, MP3, MIDI, Ogg Vorbis, and PCM/WAVE formats.

Audio playback can be performed using either the MediaPlayer or the AudioTrack classes. AudioTrack is a more
advanced option that uses streaming audio buffers and provides greater control over the audio. The MediaPlayer
class, on the other hand, provides an easier programming interface for implementing audio playback and will
meet the needs of most audio requirements.

The MediaPlayer class has associated with it a range of methods that can be called by an application to perform
certain tasks. A subset of some of the key methods of this class is as follows:

• create() – Called to create a new instance of the class, passing through the Uri of the audio to be played.

• setDataSource() – Sets the source from which the audio is to play.

• prepare() – Instructs the player to prepare to begin playback.

• start() – Starts the playback.

• pause() – Pauses the playback. Playback may be resumed via a call to the resume() method.

• stop() – Stops playback.

• setVolume() – Takes two floating-point arguments specifying the playback volume for the left and right
channels.

• resume() – Resumes a previously paused playback session.

• reset() – Resets the state of the media player instance. Essentially sets the instance back to the uninitialized
state. At a minimum, a reset player will need to have the data source set again, and the prepare() method
called.

• release() – To be called when the player instance is no longer needed. This method ensures that any resources
held by the player are released.

In a typical implementation, an application will instantiate an instance of the MediaPlayer class, set the source

622

Android Audio Recording and Playback using MediaPlayer and MediaRecorder

of the audio to be played, and then call prepare() followed by start(). For example:
MediaPlayer mediaPlayer = new MediaPlayer();

mediaPlayer.setDataSource("https://www.yourcompany.com/myaudio.mp3");

mediaPlayer.prepare();

mediaPlayer.start();

73.2 Recording Audio and Video using the MediaRecorder Class
As with audio playback, recording can be performed using several different techniques. One option is to use the
MediaRecorder class, which, as with the MediaPlayer class, provides several methods that are used to record
audio:

• setAudioSource() – Specifies the audio source to be recorded (typically, this will be MediaRecorder.
AudioSource.MIC for the device microphone).

• setVideoSource() – Specifies the source of the video to be recorded (for example MediaRecorder.VideoSource.
CAMERA).

• setOutputFormat() – Specifies the format into which the recorded audio or video is to be stored (for example
MediaRecorder.OutputFormat.AAC_ADTS).

• setAudioEncoder() – Specifies the audio encoder for the recorded audio (for example MediaRecorder.
AudioEncoder.AAC).

• setOutputFile() – Configures the path to the file into which the recorded audio or video will be stored.

• prepare() – Prepares the MediaRecorder instance to begin recording.

• start() - Begins the recording process.

• stop() – Stops the recording process. Once a recorder has been stopped, it must be completely reconfigured
and prepared before restarting.

• reset() – Resets the recorder. The instance will need to be completely reconfigured and prepared before being
restarted.

• release() – Should be called when the recorder instance is no longer needed. This method ensures that all
resources held by the instance are released.

A typical implementation using this class will set the source, output, encoding format, and output file. Calls will
then be made to the prepare() and start() methods. The stop() method will then be called when the recording
ends, followed by the reset() method. When the application no longer needs the recorder instance, a call to the
release() method is recommended:
MediaRecorder mediaRecorder = new MediaRecorder();

mediaRecorder.setAudioSource(MediaRecorder.AudioSource.MIC);

mediaRecorder.setOutputFormat(MediaRecorder.OutputFormat.AAC_ADTS);

mediaRecorder.setAudioEncoder(MediaRecorder.AudioEncoder.AAC);

mediaRecorder.setOutputFile(audioFilePath);

mediaRecorder.prepare();

mediaRecorder.start();

623

Android Audio Recording and Playback using MediaPlayer and MediaRecorder

.

.

mediaRecorder.stop();

mediaRecorder.reset();

mediaRecorder.release();

To record audio, the manifest file for the application must include the android.permission.RECORD_AUDIO
permission:
<uses-permission android:name="android.permission.RECORD_AUDIO" />

As outlined in the chapter entitled “Making Runtime Permission Requests in Android”, access to the microphone
falls into the category of dangerous permissions. To support Android 6, therefore, a specific request for
microphone access must also be made when the application launches, the steps for which will be covered later
in this chapter.

73.3 About the Example Project
The remainder of this chapter will create an example application to demonstrate the use of the MediaPlayer and
MediaRecorder classes to implement the recording and playback of audio on an Android device.

When developing applications that use specific hardware features, the microphone being a case in point, it is
important to check the feature’s availability before attempting to access it in the application code. The application
created in this chapter will, therefore, also include code to detect the presence of a microphone on the device.

Once completed, this application will provide a straightforward interface allowing the user to record and play
audio. The recorded audio will be stored within an audio file on the device. That being the case, this tutorial will
also briefly explore the mechanism for using SD Card storage.

73.4 Creating the AudioApp Project
Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter AudioApp into the Name field and specify com.ebookfrenzy.audioapp as the package name. Before clicking
on the Finish button, change the Minimum API level setting to API 31: Android 12.0 and the Language menu
to Java. Add view binding support to the project using the steps outlined in section 11.8 Migrating a Project to
View Binding.

73.5 Designing the User Interface
Once the new project has been created, select the activity_main.xml file from the Project tool window, and with
the Layout Editor tool in Design mode, select the “Hello World!” TextView and delete it from the layout.

Drag and drop three Button views onto the layout. The positioning of the buttons is not paramount to this
example, though Figure 73-1 shows a suggested layout using a vertical chain.

Configure the buttons to display string resources that read Play, Record, and Stop and give them view IDs of
playButton, recordButton, and stopButton, respectively.

Select the Play button and, within the Attributes panel, configure the onClick property to call a method named
playAudio when selected by the user. Repeat these steps to configure the remaining buttons to call methods
named recordAudio and stopAudio, respectively.

624

Android Audio Recording and Playback using MediaPlayer and MediaRecorder

Figure 73-1

73.6 Checking for Microphone Availability
Attempting to record audio on a device without a microphone will cause the Android system to throw an
exception. It is vital, therefore, that the code checks for the presence of a microphone before making such an
attempt. There are several ways of doing this, including checking for the physical presence of the device. An
easier approach that is more likely to work on different Android devices is to ask the Android system if it has
a package installed for a particular feature. This involves creating an instance of the Android PackageManager
class and then calling the object’s hasSystemFeature() method. PackageManager.FEATURE_MICROPHONE is
the feature of interest in this case.

For this example, we will create a method named hasMicrophone() that may be called upon to check for the
presence of a microphone. Within the Project tool window, locate and double-click on the MainActivity.java file
and modify it to add this method:
package com.ebookfrenzy.audioapp;

.

.

import android.content.pm.PackageManager;
.

.

public class MainActivity extends AppCompatActivity {

.

.

 protected boolean hasMicrophone() {
 PackageManager pmanager = this.getPackageManager();
 return pmanager.hasSystemFeature(
 PackageManager.FEATURE_MICROPHONE);
 }
}

625

Android Audio Recording and Playback using MediaPlayer and MediaRecorder

73.7 Initializing the Activity
The next step is to modify the activity to perform several initialization tasks. Remaining within the MainActivity.
java file, modify the code as follows:
package com.ebookfrenzy.audioapp;

import java.io.File;
import java.io.IOException;

import androidx.annotation.NonNull;
import android.media.MediaRecorder;
import android.os.Environment;
import android.media.MediaPlayer;
.

.

public class MainActivity extends AppCompatActivity {

 private ActivityMainBinding binding;

 private static MediaRecorder mediaRecorder;
 private static MediaPlayer mediaPlayer;

 private static String audioFilePath;
 private boolean isRecording = false;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 View view = binding.getRoot();

 setContentView(view);

 audioSetup();
 }

 private void audioSetup()
 {
 if (!hasMicrophone())
 {
 binding.stopButton.setEnabled(false);
 binding.playButton.setEnabled(false);
 binding.recordButton.setEnabled(false);
 } else {
 binding.playButton.setEnabled(false);
 binding.stopButton.setEnabled(false);
 }

 File audioFile = new File(this.getFilesDir(), "myaudio.3gp");

626

Android Audio Recording and Playback using MediaPlayer and MediaRecorder

 audioFilePath = audioFile.getAbsolutePath();
 }
.

.

}

The added code calls hasMicrophone() method to ascertain whether the device includes a microphone. If it does
not, all the buttons are disabled; otherwise, only the Stop and Play buttons are disabled.

The next line of code needs a little more explanation:
File audioFile = new File(this.getFilesDir(), "myaudio.3gp");

audioFilePath = audioFile.getAbsolutePath();

This code creates a new file named myaudio.3gp within the app’s internal storage to store the audio recording.

73.8 Implementing the recordAudio() Method
The recordAudio() method will be called when the user touches the Record button. This method will need to
turn the appropriate buttons on and off and configure the MediaRecorder instance with information about the
source of the audio, the output format and encoding, and the file’s location into which the audio is to be stored.
Finally, the prepare() and start() methods of the MediaRecorder object will need to be called. Combined, these
requirements result in the following method implementation in the MainActivity.java file:
public void recordAudio (View view)

{

 isRecording = true;

 binding.stopButton.setEnabled(true);

 binding.playButton.setEnabled(false);

 binding.recordButton.setEnabled(false);

 try {

 mediaRecorder = new MediaRecorder(this);

 mediaRecorder.setAudioSource(MediaRecorder.AudioSource.MIC);

 mediaRecorder.setOutputFormat(

 MediaRecorder.OutputFormat.THREE_GPP);

 mediaRecorder.setOutputFile(audioFilePath);

 mediaRecorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);

 mediaRecorder.prepare();

 } catch (Exception e) {

 e.printStackTrace();

 }

 mediaRecorder.start();

}

73.9 Implementing the stopAudio() Method
The stopAudio() method enables the Play button, turning off the Stop button, and then stopping and resetting
the MediaRecorder instance. The code to achieve this reads as outlined in the following listing and should be
added to the MainActivity.java file:
public void stopAudio (View view)

{

627

Android Audio Recording and Playback using MediaPlayer and MediaRecorder

 binding.stopButton.setEnabled(false);

 binding.playButton.setEnabled(true);

 if (isRecording)

 {

 binding.recordButton.setEnabled(false);

 mediaRecorder.stop();

 mediaRecorder.release();

 mediaRecorder = null;

 isRecording = false;

 } else {

 mediaPlayer.release();

 mediaPlayer = null;

 binding.recordButton.setEnabled(true);

 }

}

73.10 Implementing the playAudio() method
The playAudio() method will create a new MediaPlayer instance, assign the audio file located on the SD card as
the data source and then prepare and start the playback:
public void playAudio (View view) throws IOException

{

 binding.playButton.setEnabled(false);

 binding.recordButton.setEnabled(false);

 binding.stopButton.setEnabled(true);

 mediaPlayer = new MediaPlayer();

 mediaPlayer.setDataSource(audioFilePath);

 mediaPlayer.prepare();

 mediaPlayer.start();

}

73.11 Configuring and Requesting Permissions
Before testing the application, the appropriate permissions must be requested within the manifest file for the
application. Specifically, the application will require permission to access the microphone. Within the Project
tool window, locate and double-click on the AndroidManifest.xml file to load it into the editor and modify the
XML to add the permission tags:
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools">

 <uses-permission android:name="android.permission.RECORD_AUDIO" />

 <application

.

.

628

Android Audio Recording and Playback using MediaPlayer and MediaRecorder

The above steps will be adequate to ensure that the user enables microphone access permission when the app is
installed on devices running versions of Android predating Android 6.0. Microphone access is categorized in
Android as being a dangerous permission because it allows the app to compromise the user’s privacy. For the
example app to function on Android 6 or later devices, code needs to be added to request permission at app
runtime.

Edit the MainActivity.java file and begin by adding some additional import directives and a constant to act as
request identification codes for the permissions being requested:
.

.

import androidx.core.app.ActivityCompat;
import androidx.core.content.ContextCompat;
import android.widget.Toast;
import android.Manifest;
.

.

public class MainActivity extends AppCompatActivity {

 private static final int RECORD_REQUEST_CODE = 101;
.

.

Next, a method needs to be added to the class, the purpose of which is to take as arguments the permission to
be requested and the corresponding request identification code. Remaining with the MainActivity.java class file,
implement this method as follows:
protected void requestPermission(String permissionType, int requestCode) {

 int permission = ContextCompat.checkSelfPermission(this,

 permissionType);

 if (permission != PackageManager.PERMISSION_GRANTED) {

 ActivityCompat.requestPermissions(this,

 new String[]{permissionType}, requestCode

);

 }

}

Using the steps outlined in the “Making Runtime Permission Requests in Android” chapter of this book, the above
method verifies that the specified permission has not already been granted before making the request, passing
through the identification code as an argument.

When the request has been handled, the onRequestPermissionsResult() method will be called on the activity,
passing through the identification code and the request results. The next step, therefore, is to implement this
method within the MainActivity.java file as follows:
@Override

public void onRequestPermissionsResult(int requestCode,

 @NonNull String[] permissions, @NonNull int[] grantResults) {

 super.onRequestPermissionsResult(requestCode, permissions, grantResults);

629

Android Audio Recording and Playback using MediaPlayer and MediaRecorder

 if (requestCode == RECORD_REQUEST_CODE) {

 if (grantResults.length == 0

 || grantResults[0] !=

 PackageManager.PERMISSION_GRANTED) {

 binding.recordButton.setEnabled(false);

 Toast.makeText(this,

 "Record permission required",

 Toast.LENGTH_LONG).show();

 }

 }

}

The above code checks the request identifier code to identify which permission request has returned before
checking whether or not the corresponding permission was granted. If permission is denied, a message is
displayed to the user indicating that the app will not function and the record button is disabled.

Before testing the app, all that remains is to call the newly added requestPermission() method for microphone
access when the app launches. Remaining in the MainActivity.java file, modify the audioSetup() method as
follows:
private void audioSetup(){

 binding.recordButton = findViewById(R.id.recordButton);

 binding.playButton = findViewById(R.id.playButton);

 binding.stopButton = findViewById(R.id.stopButton);

 if (!hasMicrophone())

 {

 stopButton.setEnabled(false);

 playButton.setEnabled(false);

 recordButton.setEnabled(false);

 } else {

 playButton.setEnabled(false);

 stopButton.setEnabled(false);

 }

 File audioFile = new File(this.getFilesDir(), "myaudio.3gp");

 audioFilePath = audioFile.getAbsolutePath();

 requestPermission(Manifest.permission.RECORD_AUDIO,
 RECORD_REQUEST_CODE);
}

73.12 Testing the Application
Compile and run the application on an Android device containing a microphone, allow microphone access, and
tap the Record button. After recording, touch Stop followed by Play. At this point, the recorded audio should
play back through the device speakers.

630

Android Audio Recording and Playback using MediaPlayer and MediaRecorder

73.13 Summary
The Android SDK provides several mechanisms to implement audio recording and playback. This chapter has
looked at two of these: the MediaPlayer and MediaRecorder classes. Having covered the theory of using these
techniques, this chapter worked through creating an example application designed to record and then play back
audio. While working with audio in Android, this chapter also looked at the steps involved in ensuring that the
device on which the application is running has a microphone before attempting to record audio.

677

A Guide to Android Custom Document Printing

.

.

}

This method obtains a reference to the Print Manager service running on the device before creating a new String
object to serve as the job name for the print task. Finally, the print() method of the Print Manager is called to
start the print job, passing through the job name and an instance of our custom print document adapter class.

77.9 Testing the Application
Compile and run the application on an Android device or emulator. When the application has loaded, touch
the “Print Document” button to initiate the print job and select a suitable target for the output (the Save to PDF
option is useful for avoiding wasting paper and printer ink).

Check the printed output, which should consist of 4 pages, including text and graphics. Figure 77-3, for example,
shows the four pages of the document viewed as a PDF file ready to be saved on the device.

Experiment with other print configuration options, such as changing the paper size, orientation, and page
settings within the print panel. The printed output should reflect each setting change, indicating that the custom
print document adapter functions correctly.

Figure 77-3

77.10 Summary
Although more complex to implement than the Android Printing framework HTML and image printing
options, custom document printing provides considerable flexibility in printing complex content within an
Android application. Most of the work in implementing custom document printing involves the creation of a
custom Print Adapter class that not only draws the content on the document pages but also responds correctly
as the user changes print settings, such as the page size and range of pages to be printed.

679

Chapter 78

78. An Introduction to Android App
Links
As technology evolves, the traditional distinction between web and mobile content is beginning to blur. One
area where this is particularly true is the growing popularity of progressive web apps, where web apps look and
behave much like traditional mobile apps.

Another trend involves making the content within mobile apps discoverable through web searches and via URL
links. In the context of Android app development, the App Links feature is designed to make it easier for users
to discover and access content stored within an Android app, even if the user does not have the app installed.

78.1 An Overview of Android App Links
An app link is a standard HTTP URL that is an easy way to link directly to a particular place in your app from
an external source such as a website or app. App links (also called deep links) are used primarily to encourage
users to engage with an app and to allow users to share app content.

App link implementation is a multi-step process that involves the addition of intent filters to the project manifest,
implementing link handling code within the associated app activities, and the use of digital asset links files to
associate app and web-based content.

These steps can be performed manually by making changes within the project or automatically using the
Android Studio App Links Assistant.

These steps can be performed manually by making project changes or automatically using the Android Studio
App Links Assistant.

The remainder of this chapter will outline app links implementation in terms of the changes that must be made
to a project. The next chapter (“An Android Studio App Links Tutorial”) will demonstrate the use of the App Links
Assistant to achieve the same results.

78.2 App Link Intent Filters
An app link URL needs to be mapped to a specific activity within an app project. This is achieved by adding intent
filters to the project’s AndroidManifest.xml file designed to launch an activity in response to an android.intent.
action.VIEW action. The intent filters are declared within the element for the activity to be launched and must
contain the data outlining the scheme, host, and path of the app link URL. The following manifest fragment,
for example, declares an intent filter to launch an activity named MyActivity when an app link matching http://
www.example.com/welcome is detected:
<activity android:name="com.ebookfrenzy.myapp.MyActivity">

 <intent-filter android:autoVerify="true">

 <action android:name="android.intent.action.VIEW" />

 <category android:name="android.intent.category.DEFAULT" />

 <category android:name="android.intent.category.BROWSABLE" />

680

An Introduction to Android App Links

 <data

 android:scheme="http"

 android:host="www.example.com"

 android:pathPrefix="/welcome" />

 </intent-filter>

</activity>

The order in which ambiguous intent filters are handled can be specified using the order property of the intent
filter tag as follows:
<application>

 <activity android:name=" com.ebookfrenzy.myapp.MyActivity">

 <intent-filter android:autoVerify="true" android:order="1">
.
.

The intent filter will cause the app link to launch the correct activity, but code must still be added to the target
activity to handle the intent appropriately.

78.3 Handling App Link Intents
In most cases, the launched activity will need to gain access to the app link URL and take specific action based
on how the URL is structured. Continuing from the above example, the activity will likely display different
content when launched via a URL containing a path of /welcome/newuser than one with the path set to /welcome/
existinguser.

When the link launches the activity, it is passed an intent object containing data about the action which launched
the activity, including a Uri object containing the app link URL. Within the initialization stages of the activity,
code can be added to extract this data as follows:
Intent appLinkIntent = getIntent();

String appLinkAction = appLinkIntent.getAction();

Uri appLinkData = appLinkIntent.getData();

Having obtained the Uri for the app link, the various components that make up the URL path can be used to
decide the actions to perform within the activity. In the following code example, the last component of the URL
is used to identify whether content should be displayed for a new or existing user:
String userType = appLinkData.getLastPathSegment();

if (userType.equals("newuser")) {

 // display new user content

} else {

 // display existing user content

}

78.4 Associating the App with a Website
Before an app link will work, an app link URL must be associated with the website on which the app link is
based. This is achieved by creating a Digital Asset Links file named assetlinks.json and installing it within the
website’s .well-known folder. Note that digital asset linking is only possible for websites that are HTTPS based.

A digital asset links file comprises a relation statement granting permission for a target app to be launched
using the website’s link URLs and a target statement declaring the companion app package name and SHA-256
certificate fingerprint for that project. A typical asset link file might, for example, read as follows:

681

An Introduction to Android App Links

[{

 "relation": ["delegate_permission/common.handle_all_urls"],

 "target" : { "namespace": "android_app",

 "package_name": "<app package name here>",

 "sha256_cert_fingerprints": ["<app certificate here>"] }

}]

The assetlinks.json file can contain multiple digital asset links, allowing a single website to be associated with
more than one companion app.

78.5 Summary
Android App Links allow app activities to be launched via URL links from external websites and other apps. App
links are implemented using intent filters within the project manifest file and intent handling code within the
launched activity. Using a Digital Asset Links file, it is also possible to associate the domain name used in an app
link with the corresponding website. Once the association has been established, Android no longer needs to ask
the user to select the target app when an app link is used.

701

Chapter 81

81. Creating, Testing, and Uploading
an Android App Bundle
Once the development work on an Android application is complete and tested on a wide range of Android
devices, the next step is to prepare the application for submission to Google Play. Before submission can take
place, however, the application must be packaged for release and signed with a private key. This chapter will
work through obtaining a private key, preparing the Android App Bundle for the project, and uploading it to
Google Play.

81.1 The Release Preparation Process
Up until this point in the book, we have been building application projects in a mode suitable for testing and
debugging. On the other hand, building an application package for release to customers via Google Play requires
additional steps. The first requirement is to compile the application in release mode instead of debug mode.
Secondly, the application must be signed with a private key that uniquely identifies you as the application’s
developer. Finally, the application must be packaged into an Android App Bundle.

While these tasks can be performed outside of the Android Studio environment, the procedures can more easily
be performed using the Android Studio build mechanism, as outlined in the remainder of this chapter. First,
however, it is important to understand more about Android App Bundles.

81.2 Android App Bundles
When a user installs an app from Google Play, the app is downloaded in the form of an APK file. This file
contains everything needed to install and run the app on the user’s device. Before the introduction of Android
Studio 3.2, the developer would generate one or more APK files using Android Studio and upload them to
Google Play. Supporting multiple device types, screen sizes, and locales would require creating and uploading
multiple APK files customized for each target device and locale or generating a large universal APK containing
all of the different configuration resources and platform binaries within a single package.

Creating multiple APK files involved a significant amount of work that had to be repeated each time the app was
updated, imposing a considerable time overhead on the app release process.

Creating multiple APK files involved a significant amount of work that had to be repeated each time the app
needed to be updated imposing a considerable time overhead to the app release process.

The universal APK option, while less of a burden to the developer, caused an entirely unexpected problem. By
analyzing app installation metrics, Google discovered that the larger an installation APK file becomes (resulting
in longer download times and increased storage use), the fewer conversions the app receives. The conversion
rate is calculated as a percentage of the users who completed the installation of an app after viewing that app on
Google Play. Google estimates that the conversion rate for an app drops by 1% for each 6MB increase in APK
file size.

Android App Bundles solve these problems by allowing the developer to create a single package from within
Android Studio and have custom APK files automatically generated by Google Play for each individual supported
configuration (a concept called Dynamic Delivery).

702

Creating, Testing, and Uploading an Android App Bundle

An Android App Bundle is a ZIP file containing all the files necessary to build APK files for the devices and locales
for which support has been provided within the app project. The project might, for example, include resources
and images for different screen sizes. When a user installs the app, Google Play receives information about the
device, including the display, processor architecture, and locale. Using this information, the appropriate pre-
generated APK files are transferred onto the user’s device.

An additional benefit of Dynamic Delivery is the ability to split an app into multiple modules, referred to as
dynamic feature modules, where each module contains the code and resources for a particular area of functionality
within the app. Each dynamic feature module is contained within a separate APK file from the base module and
is downloaded to the device only when the user requires that feature. Dynamic Delivery and app bundles also
allow for the creation of instant dynamic feature modules which can be run instantly on a device without the
need to install an entire app.

Although it is still possible to generate APK files from Android Studio, app bundles are now the recommended
way to upload apps to Google Play.

81.3 Register for a Google Play Developer Console Account
The first step in the application submission process is to create a Google Play Developer Console account.
To do so, navigate to https://play.google.com/apps/publish/signup/ and follow the instructions to complete the
registration process. Note that there is a one-time $25 fee to register. Once an application goes on sale, Google
will keep 30% of all revenues associated with the application. After creating the account, the developer console
can be accessed at https://play.google.com/console.

The next step is to gather together information about the application. To bring your application to market, the
following information will be required:

• Title – The title of the application.

• Short Description - Up to 80 words describing the application.

• Full Description – Up to 4000 words describing the application.

• Screenshots – Up to 8 screenshots of your application running (a minimum of two is required). Google
recommends submitting screenshots of the application running on a 7” or 10” tablet.

• Language – The language of the application (the default is US English).

• Promotional Text – The text that will be used when your application appears in special promotional features
within the Google Play environment.

• Application Type – Whether your application is considered a game or an application.

• Category – The category that best describes your application (for example, finance, health and fitness,
education, sports, etc.).

• Locations – The geographical locations into which you wish your application to be made available for
purchase.

• Contact Details – Methods by which users may contact you for support relating to the application. Options
include web, email, and phone.

• Pricing & Distribution – Information about the price of the application and the geographical locations where
it is to be marketed and sold.

Having collected the above information, click the Create app button within the Google Play Console to begin

https://play.google.com/apps/publish/signup/
https://play.google.com/console

703

Creating, Testing, and Uploading an Android App Bundle

the creation process.

81.4 Configuring the App in the Console
When the Create app button is first clicked, the app details and declarations screen will appear as shown in
Figure 81-1 below:

Figure 81-1
Once the app entry has been fully configured, click on the Create app button (highlighted in the above figure) to
add the app and display the dashboard screen. Within the dashboard, locate the Initial setup section and unfold
the list of steps to configure the app store listing:

Figure 81-2

704

Creating, Testing, and Uploading an Android App Bundle

Work through the list of links and provide the requested information for your app, making sure to save the
changes at each step.

81.5 Enabling Google Play App Signing
Until recently, Google Play uploads were signed with a release app signing key from within Android Studio and
then uploaded to the Google Play console. While this option is still available, the recommended way to upload
files is to use a process called Google Play App Signing. For a newly created app, this involves opting into Google
Play App Signing and generating an upload key to sign the app bundle file within Android Studio. When the
app bundle file generated by Android Studio is uploaded, the Google Play console removes the upload key and
signs the file with an app signing key stored securely within the Google Play servers. For existing apps, some
additional steps are required to enable Google Play Signing and will be covered at the end of this chapter.

Within the Google Play console, select the newly added app entry from the All Apps screen (accessed via the
option located at the top of the left-hand navigation panel), unfold the Setup section (Marked A in Figure 81-3),
and select the App Signing option (B).

Figure 81-3
Opt into Google Play app signing by clicking on the Create release button (C). The console is now ready to create
the first release of your app for testing. Before doing so, however, the next step is to generate the upload key from
within Android Studio. This is performed as part of the process of generating a signed app bundle. Leave the
current Google Play Console screen loaded into the browser, as we will be returning to this later in the chapter.

81.6 Creating a Keystore File
To create a keystore file, select the Android Studio Build -> Generate Signed Bundle / APK… menu option to
display the Generate Signed Bundle or APK Wizard dialog as shown in Figure 81-4:

Figure 81-4
Verify that the Android App Bundle option is selected before clicking the Next button.

705

Creating, Testing, and Uploading an Android App Bundle

If you have an existing release keystore file, click on the Choose existing… button on the next screen and navigate
to and select the file. If you have not created a keystore file, click the Create new… button to display the New Key
Store dialog (Figure 81-5). Click on the button to the right of the Key store path field and navigate to a suitable
location on your file system, enter a name for the keystore file (for example, release.keystore.jks) and click the
OK button.

The New Key Store dialog is divided into two sections. The top section relates to the keystore file. In this section,
enter a strong password to protect the keystore file into both the Password and Confirm fields. The lower section
of the dialog relates to the upload key that will be stored in the key store file.

Figure 81-5
Within the Key section of the New Key Store dialog, enter the following details:

• An alias by which the key will be referenced. This can be any sequence of characters, though the system uses
only the first eight.

• A suitably strong password to protect the key.

• The number of years for which the key is to be valid (Google recommends a duration in excess of 25 years).

In addition, information must be provided for at least one of the remaining fields (for example, your first and
last name or organization name).

Once the information has been entered, click the OK button to create the bundle.

81.7 Creating the Android App Bundle
The next step is instructing Android Studio to build the application app bundle file in release mode and sign
it with the newly created private key. At this point, the Generate Signed Bundle or APK dialog should still be
displayed with the keystore path, passwords, and key alias fields populated with information:

706

Creating, Testing, and Uploading an Android App Bundle

Figure 81-6
Ensure that the Export Encrypted Key option is enabled and, assuming the other settings are correct, click
on the Next button to proceed to the app bundle generation screen (Figure 81-7). Within this screen, review
the Destination Folder: setting to verify that the location into which the app bundle file will be generated is
acceptable. If another location is preferred, click on the button to the right of the text field and navigate to the
desired file system location.

Figure 81-7
Click the Finish button and wait for the Gradle system to build the app bundle. Once the build is complete, a
dialog will appear providing the option to open the folder containing the app bundle file in an explorer window
or to load the file into the APK Analyzer:

Figure 81-8

707

Creating, Testing, and Uploading an Android App Bundle

At this point, the application is ready to be submitted to Google Play. Click on the locate link to open a filesystem
browser window. The file should be named bundle.aab and located in the project folder’s app/release sub-
directory unless another location is specified.

The private key generated as part of this process should be used when signing and releasing future applications
and, as such, should be kept in a safe place and securely backed up.

81.8 Generating Test APK Files
An optional step at this stage is to generate APK files from the app bundle and install and run them on devices or
emulator sessions. Google provides a command-line tool called bundletool designed specifically for this purpose
which can be downloaded from the following URL:

https://github.com/google/bundletool/releases

At the time of writing, bundletool is provided as a .jar file which can be executed from the command line as
follows (noting that the version number may have changed since this book was published):
java -jar bundletool-all-0.9.0.jar

Running the above command will list all of the options available within the tool. To generate the APK files from
the app bundle, the build-apks option is used. The files will also need to be signed to generate APK files that can
be installed onto a device or emulator. To achieve this, include the --ks option specifying the path of the keystore
file created earlier in the chapter and the --ks-key-alias option specifying the alias provided when the key was
generated.

Finally, the --output flag must be used to specify the path of the file (called the APK Set) into which the APK files
will be generated. This file must not already exist and is required to have a .apks filename extension. Bringing
these requirements together results in the following command line (allowing for differences in your operating
system path structure):
java -jar bundletool-all-0.9.0.jar build-apks --bundle=/tmp/MyApps/app/release/
bundle.aab --output=/tmp/MyApks.apks --ks=/MyKeys/release.keystore.jks --ks-key-
alias=MyReleaseKey

When this command is executed, a prompt will appear requesting the keystore password before the APK files
are generated into the specified APK Set file. The APK Set file is a ZIP file containing all the APK files generated
from the app bundle.

To install the appropriate APK files onto a connected device or emulator, use a command similar to the following:
java -jar bundletool-all-0.9.0.jar install-apks --apks=/tmp/MyApks.apks

This command will instruct the tool to identify the appropriate APK files for the connected device and install
them so that the app can be launched and tested.

It is also possible to extract the APK files from the APK Set for the connected device without installing them.
The first step in this process is to obtain the specification of the connected device as follows:
java -jar bundletool-all-0.9.0.jar get-device-spec --output=/tmp/device.json

The above command will generate a JSON file similar to the following:
{

 "supportedAbis": ["x86"],

 "supportedLocales": ["en-US"],

 "screenDensity": 420,

 "sdkVersion": 27

https://github.com/google/bundletool/releases

708

Creating, Testing, and Uploading an Android App Bundle

}

Next, this specification file is used to extract the matching APK files from the APK Set:
java -jar bundletool-all-0.9.0.jar extract-apks --apks=/tmp/MyApks.apks --output-
dir=/tmp/nexus5_apks --device-spec=/tmp/device.json

When executed, the directory specified via the --output-dir flag will contain the correct APK files for the specified
device configuration.

The next step in bringing an Android application to market involves submitting it to the Google Play Developer
Console o make it available for testing.

81.9 Uploading the App Bundle to the Google Play Developer Console
Return to the Google Play Console and select the Internal testing option (marked A in Figure 81-9) located in the
Testing section of the navigation panel before clicking on the Create new release button (B):

Figure 81-9
On the resulting screen, click on the Continue button (marked A below) to confirm the use of Google Play app
signing, then drag and drop the bundle file generated by Android Studio onto the upload drop point (B):

Figure 81-10
When the upload is complete, scroll down the screen and enter the release name and optional release notes. The
release name can be any information you need to help you recognize the release, and it is not visible to users.

After the app bundle file is uploaded, Google Play will generate all the necessary APK files ready for testing.
Once the APK files have been generated, scroll down to the bottom of the screen and click on the Save button.
Once the settings have been saved, click on the Review release button.

709

Creating, Testing, and Uploading an Android App Bundle

81.10 Exploring the App Bundle
On the review screen, click on the arrow to the right of the uploaded bundle as indicated in Figure 81-11:

Figure 81-11
In the resulting panel, click on the Explore bundle link to load the app bundle explorer. This provides summary
information relating to the API levels, screen layouts, and platforms supported by the app bundle:

Figure 81-12

Clicking on the Go to device catalog link will display the devices that are supported by the APK file:

710

Creating, Testing, and Uploading an Android App Bundle

Figure 81-13

Currently, the app is ready for testing but can only be rolled out once some testers have been set up within the
console.

81.11 Managing Testers
If the app is still in the Internal, Alpha, or Beta testing phase, a list of authorized testers may be specified by
selecting the app from within the Google Play console, clicking on Internal testing in the navigation panel, and
selecting the Testers tab as shown in Figure 81-14:

Figure 81-14
To add testers, click on the Create email list button, name the list, and specify the test users’ email addresses
manually or by uploading a CSV file.

The “Join on the web” URL may now be copied from the screen and provided to the test users so that they accept
the testing invitation and download the app.

81.12 Rolling the App Out for Testing
Now that an internal release has been created and a list of testers added, the app is ready to be rolled out for
testing. Remaining within the Internal testing screen, select the Releases tab before clicking on the Edit button
for the recently created release:

711

Creating, Testing, and Uploading an Android App Bundle

Figure 81-15
On the review screen, scroll to the bottom and click on the Start rollout to Internal testing button. After a short
delay while the release is processed, the app will be ready to be downloaded and tested by the designated users.

81.13 Uploading New App Bundle Revisions
The first app bundle file uploaded for your application will invariably have a version code of 1. If an attempt is
made to upload another bundle file with the same version code number, the console will reject the file with the
following error:
You need to use a different version code for your APK because you already have
one with version code 1.

To resolve this problem, the version code embedded into the bundle file needs to be increased. This is performed
in the module level build.gradle.kts file of the project, shown highlighted in Figure 81-16:

Figure 81-16
This file will typically read as follows:
plugins {

 id("com.android.application")

}

android {

 namespace = "com.ebookfrenzy.biometricdemo"

 compileSdk = 33

 defaultConfig {

 applicationId = "com.ebookfrenzy.biometricdemo"

712

Creating, Testing, and Uploading an Android App Bundle

 minSdk = 29

 targetSdk = 33

 versionCode = 1

 versionName = "1.0"

.

.

}

To change the version code, change the number declared next to versionCode. To also change the version number
displayed to users of your application, change the versionName string. For example:
versionCode 2

versionName "2.0"

After making these changes, rebuild the APK file and perform the upload again.

81.14 Analyzing the App Bundle File
Android Studio provides the ability to analyze the content of an app bundle file. To analyze a bundle file, select
the Android Studio Build -> Analyze APK… menu option and navigate to and choose the bundle file to be
reviewed. Once loaded into the tool, information will be displayed about the raw and download size of the
package together with a listing of the file structure of the package as illustrated in Figure 81-17:

Figure 81-17
Selecting the classes.dex file will display the class structure of the file in the lower panel. Within this panel, details
of the individual classes may be explored down to the level of the methods within a class:

Figure 81-18
Similarly, selecting a resource or image file within the file list will display the file content within the lower panel.
The size differences between two bundle files may be reviewed by clicking on the Compare with previous APK…
button and selecting a second bundle file.

713

Creating, Testing, and Uploading an Android App Bundle

81.15 Summary
Once an app project is complete or ready for user testing, it can be uploaded to the Google Play console and
published for production, internal, alpha, or beta testing. Before the app can be uploaded, an app entry must be
created within the console, including information about the app and screenshots for use within the Play Store.
A release Android App Bundle file is generated and signed with an upload key within Android Studio. After the
bundle file has been uploaded, Google Play removes the upload key and replaces it with the securely stored app
signing key, and the app is ready to be published.

The content of a bundle file can be reviewed at any time by loading it into the Android Studio APK Analyzer
tool.

715

Chapter 82

82. An Overview of Android In-App
Billing
n the early days of mobile applications for operating systems such as Android and iOS, the most common
method for earning revenue was to charge an upfront fee to download and install the application. Another
revenue opportunity was soon introduced by embedding advertising within applications. The most common
and lucrative option is to charge the user for purchasing items from within the application after installing it. This
typically takes the form of access to a higher level in a game, acquiring virtual goods or currency, or subscribing
to premium content in the digital edition of a magazine or newspaper.

Google supports integrating in-app purchasing through the Google Play In-App Billing API and the Play
Console. This chapter will provide an overview of in-app billing and outline how to integrate in-app billing into
your Android projects. Once these topics have been explored, the next chapter will walk you through creating
an example app that includes in-app purchasing features.

82.1 Preparing a Project for In-App Purchasing
Building in-app purchasing into an app will require a Google Play Developer Console account, details of which
were covered previously in the “Creating, Testing and Uploading an Android App Bundle” chapter. You must also
register a Google merchant account. These settings can be found by navigating to Setup -> Payments profile
in the Play Console. Note that merchant registration is not available in all countries. For details, refer to the
following page:

https://support.google.com/googleplay/android-developer/answer/9306917

The app must then be uploaded to the console and enabled for in-app purchasing. However, the console will
not activate in-app purchasing support for an app unless the Google Play Billing Library has been added to the
module-level build.gradle.kts file:
dependencies {

.

.

 implementation ("com.android.billingclient:billing:<latest version>")
.

.

}

Once the build file has been modified and the app bundle uploaded to the console, the next step is to add in-app
products or subscriptions for the user to purchase.

82.2 Creating In-App Products and Subscriptions
Products and subscriptions are created and managed using the options listed beneath the Monetize section of
the Play Console navigation panel, as highlighted in Figure 82-1 below:

https://support.google.com/googleplay/android-developer/answer/9306917

716

An Overview of Android In-App Billing

Figure 82-1
Each product or subscription needs an ID, title, description, and pricing information. Purchases fall into the
categories of consumable (the item must be purchased each time it is required by the user, such as virtual
currency in a game), non-consumable (only needs to be purchased once by the user, such as content access), and
subscription-based. Consumable and non-consumable products are collectively referred to as managed products.

Subscriptions are useful for selling an item that needs to be renewed regularly, such as access to news content
or the premium features of an app. When creating a subscription, a base plan specifies the price, renewal period
(monthly, annually, etc.), and whether the subscription auto-renews. Users can also be given discount offers and
the option of pre-purchasing a subscription.

82.3 Billing Client Initialization
Communication between your app and the Google Play Billing Library is handled by a BillingClient instance.
In addition, BillingClient includes a set of methods that can be called to perform both synchronous and
asynchronous billing-related activities. When the billing client is initialized, it will need to be provided with a
reference to a PurchasesUpdatedListener callback handler. The client will call this handler to notify your app
of the results of any purchasing activity. To avoid duplicate notifications, it is recommended to have only one
BillingClient instance per app.

A BillingClient instance can be created using the newBuilder() method, passing through the current activity or
fragment context. The purchase update handler is then assigned to the client via the setListener() method:
private final PurchasesUpdatedListener purchasesUpdatedListener =

 new PurchasesUpdatedListener() {

 @Override

 public void onPurchasesUpdated(BillingResult billingResult,

 List<Purchase> purchases) {

 if (billingResult.getResponseCode() ==

 BillingClient.BillingResponseCode.OK

 && purchases != null) {

 // Purchase(s) successful

 for (Purchase purchase : purchases) {

 // Process purchases

717

An Overview of Android In-App Billing

 }

 } else if (billingResult.getResponseCode() ==

 BillingClient.BillingResponseCode.USER_CANCELED) {

 // User cancelled purchase

 } else {

 // handle errors here

 }

 }

};

private BillingClient billingClient = BillingClient.newBuilder(context)

 .setListener(purchasesUpdatedListener)

 .enablePendingPurchases()

 .build();

82.4 Connecting to the Google Play Billing Library
After successfully creating the Billing Client, the next step is initializing a connection to the Google Play
Billing Library. A call must be made to the startConnection() method of the billing client instance to establish
this connection. Since the connection is performed asynchronously, a BillingClientStateListener must be
implemented to receive a callback indicating whether the connection was successful. Code should also be added
to override the onBillingServiceDisconnected() method. This is called if the connection to the Billing Library is
lost and can be used to report the problem to the user and retry the connection.

Once the setup and connection tasks are complete, the BillingClient instance will make a call to the
onBillingSetupFinished() method, which can be used to check that the client is ready:
billingClient.startConnection(new BillingClientStateListener() {

 @Override

 public void onBillingSetupFinished(

 @NonNull BillingResult billingResult) {

 if (billingResult.getResponseCode() ==

 BillingClient.BillingResponseCode.OK) {

 // Connection successful

 } else {

 // Connection failed

 }

 }

 @Override

 public void onBillingServiceDisconnected() {

 // Existing connection lost

 }

});

718

An Overview of Android In-App Billing

82.5 Querying Available Products
Once the billing environment is initialized and ready to go, the next step is to request the details of the products
or subscriptions available for purchase. This is achieved by making a call to the queryProductDetailsAsync()
method of the BillingClient and passing through an appropriately configured QueryProductDetailsParams
instance containing the product ID and type (ProductType.SUBS for a subscription or ProductType.INAPP for
a managed product):
QueryProductDetailsParams queryProductDetailsParams =

 QueryProductDetailsParams.newBuilder()

 .setProductList(

 ImmutableList.of(

 QueryProductDetailsParams.Product.newBuilder()

 .setProductId("one_button_click")

 .setProductType(BillingClient.ProductType.INAPP)

 .build()))

 .build();

billingClient.queryProductDetailsAsync(queryProductDetailsParams,

 new ProductDetailsResponseListener() {

 public void onProductDetailsResponse(

 @NonNull BillingResult billingResult,

 @NonNull List<ProductDetails> productDetailsList) {

 if (!productDetailsList.isEmpty()) {

 // Process list of matching products

 } else {

 // No product matches found

 }

 }

 }

);

The queryProductDetailsAsync() method is passed a ProductDetailsResponseListener handler which, in turn,
is called and passed a list of ProductDetail objects containing information about the matching products. For
example, we can call methods on these objects to get information such as the product name, title, description,
price, and offer details.

82.6 Starting the Purchase Process
Once a product or subscription has been queried and selected for purchase by the user, the purchase process is
ready to be launched. We do this by calling the launchBillingFlow() method of the BillingClient, passing through
as arguments the current activity and a BillingFlowParams instance configured with the ProductDetail object
for the purchased item.
BillingFlowParams billingFlowParams =

 BillingFlowParams.newBuilder()

 .setProductDetailsParamsList(

 ImmutableList.of(

 BillingFlowParams.ProductDetailsParams.newBuilder()

719

An Overview of Android In-App Billing

 .setProductDetails(productDetails)

 .build()

)

)

 .build();

billingClient.launchBillingFlow(this, billingFlowParams);

The success or otherwise of the purchase operation will be reported via a call to the PurchasesUpdatedListener
callback handler outlined earlier in the chapter.

82.7 Completing the Purchase
When purchases are successful, the PurchasesUpdatedListener handler will be passed a list containing a Purchase
object for each item. You can verify that the item has been purchased by calling the getPurchaseState() method
of the Purchase instance as follows:
if (purchase.getPurchaseState() == Purchase.PurchaseState.PURCHASED) {

 // Purchase completed.

} else if (purchase.getPurchaseState() == Purchase.PurchaseState.PENDING) {

 // Payment is still pending

}

Note that your app will only support pending purchases if a call is made to the enablePendingPurchases() method
during initialization. A pending purchase will remain so until the user completes the payment process.

When the purchase of a non-consumable item is complete, it must be acknowledged to prevent a refund
from being issued to the user. This requires the purchase token for the item, which is obtained via a call to the
getPurchaseToken() method of the Purchase object. This token is used to create an AcknowledgePurchaseParams
instance and an AcknowledgePurchaseResponseListener handler. Managed product purchases and subscriptions
are acknowledged by calling the BillingClient’s acknowledgePurchase() method as follows:
AcknowledgePurchaseParams acknowledgePurchaseParams =

 AcknowledgePurchaseParams.newBuilder()

 .setPurchaseToken(purchase.getPurchaseToken())

 .build();

AcknowledgePurchaseResponseListener acknowledgePurchaseResponseListener =

 new AcknowledgePurchaseResponseListener() {

 @Override

 public void onAcknowledgePurchaseResponse(

 @NonNull BillingResult billingResult) {

 billingClient.acknowledgePurchase(

 acknowledgePurchaseParams,

 acknowledgePurchaseResponseListener);

 }

};

For consumable purchases, you will need to notify Google Play when the item has been consumed so that it
is available to be repurchased by the user. This requires a configured ConsumeParams instance containing a
purchase token, a ConsumeResponseListener, and a call to the billing client’s consumeAsync() method:

720

An Overview of Android In-App Billing

ConsumeParams consumeParams =

 ConsumeParams.newBuilder()

 .setPurchaseToken(purchase.getPurchaseToken())

 .build();

ConsumeResponseListener listener = new ConsumeResponseListener() {

 @Override

 public void onConsumeResponse(BillingResult billingResult,

 @NonNull String purchaseToken) {

 if (billingResult.getResponseCode() ==

 BillingClient.BillingResponseCode.OK) {

 // Purchase consumed successfully

 }

 }

};

billingClient.consumeAsync(consumeParams, listener);

82.8 Querying Previous Purchases
When working with in-app billing, checking whether a user has already purchased a product or subscription is a
common requirement. A list of all the user’s previous purchases of a specific type can be generated by calling the
queryPurchasesAsync() method of the BillingClient instance and implementing a PurchaseResponseListener.
The following code, for example, obtains a list of all previously purchased items that have not yet been consumed:
QueryPurchasesParams queryPurchasesParams =

 QueryPurchasesParams.newBuilder()

 .setProductType(BillingClient.ProductType.INAPP)

 .build();

billingClient.queryPurchasesAsync(queryPurchasesParams,

 new PurchasesResponseListener() {

 @Override

 public void onQueryPurchasesResponse(@NonNull BillingResult billingResult,

 @NonNull List<Purchase> list) {

 // Process list of purchases

 }

});

To obtain a list of active subscriptions, change the ProductType value from INAPP to SUBS.

Alternatively, to obtain a list of the most recent purchases for each product, make a call to the BillingClient
queryPurchaseHistoryAsync() method:
QueryPurchaseHistoryParams queryPurchaseHistoryParams =

 QueryPurchaseHistoryParams.newBuilder()

 .setProductType(BillingClient.ProductType.INAPP)

 .build();

billingClient.queryPurchaseHistoryAsync(queryPurchaseHistoryParams,

721

An Overview of Android In-App Billing

 new PurchaseHistoryResponseListener() {

 @Override

 public void onPurchaseHistoryResponse(@NonNull BillingResult billingResult,

 @NonNull List<PurchaseHistoryRecord> list) {

 // Process purchase history

 }

});

82.9 Summary
In-app purchases provide a way to generate revenue from within Android apps by selling virtual products and
subscriptions to users. This chapter explored managed products and subscriptions and explained the difference
between consumable and non-consumable products. In-app purchasing support is added to an app using the
Google Play In-app Billing Library. It involves creating and initializing a billing client on which methods are
called to perform tasks such as making purchases, listing available products, and consuming existing purchases.
The next chapter contains a tutorial demonstrating the addition of in-app purchases to an Android Studio
project.

755

Index

Index

Symbols
<application> 436

<fragment> 247

<fragment> element 247

<receiver> 470

<service> 436, 480, 487

 Code Reformatting 79

.well-known folder 443, 466, 680

A
AbsoluteLayout 126

ACCESS_COARSE_LOCATION permission 504

ACCESS_FINE_LOCATION permission 504

acknowledgePurchase() method 719

ACTION_CREATE_DOCUMENT 596

ACTION_CREATE_INTENT 596

ACTION_DOWN 222

ACTION_MOVE 222

ACTION_OPEN_DOCUMENT intent 588

ACTION_POINTER_DOWN 222

ACTION_POINTER_UP 222

ACTION_UP 222

ACTION_VIEW 461

Active / Running state 100

Activity 87, 103

adding views in Java code 203

class 103

creation 16

Entire Lifetime 107

Foreground Lifetime 107

lifecycle methods 106

lifecycles 97

returning data from 440

state change example 111

state changes 103

states 100

Visible Lifetime 107

Activity Lifecycle 99

Activity Manager 86

ActivityResultLauncher 441

Activity Stack 99

Actual screen pixels 194

adb

command-line tool 63

connection testing 69

device pairing 67

enabling on Android devices 63

Linux configuration 66

list devices 63

macOS configuration 64

overview 63

restart server 64

testing connection 69

WiFi debugging 67

Windows configuration 65

Wireless debugging 67

Wireless pairing 67

addCategory() method 469

addMarker() method 644

addView() method 197

ADD_VOICEMAIL permission 504

android

exported 437

gestureColor 240

layout_behavior property 419

onClick 249

process 437, 487

uncertainGestureColor 240

Android

Activity 87

architecture 83

events 215

intents 88

onClick Resource 215

756

Index

runtime 84

SDK Packages 6

android.app 84

Android Architecture Components 265

android.content 84

android.content.Intent 439

android.database 84

Android Debug Bridge. See ADB

Android Development

System Requirements 3

Android Devices

designing for different 125

android.graphics 84

android.hardware 84

android.intent.action 475

android.intent.action.BOOT_COMPLETED 437

android.intent.action.MAIN 461

android.intent.category.LAUNCHER 461

Android Libraries 84

android.media 85

Android Monitor tool window 36

Android Native Development Kit 85

android.net 85

android.opengl 84

android.os 85

android.permission.RECORD_AUDIO 623

android.print 85

Android Project

create new 15

android.provider 85

Android SDK Location

identifying 10

Android SDK Manager 8, 10

Android SDK Packages

version requirements 8

Android SDK Tools

command-line access 9

Linux 11

macOS 11

Windows 7 10

Windows 8 10

Android Software Stack 83

Android Storage Access Framework 588

Android Studio

changing theme 61

downloading 3

Editor Window 56

installation 4

Linux installation 5

macOS installation 4

Navigation Bar 55

Project tool window 56

setup wizard 5

Status Bar 56

Toolbar 55

Tool window bars 56

tool windows 56

updating 12

Welcome Screen 53

Windows installation 4

android.text 85

android.util 85

android.view 85

android.view.View 128

android.view.ViewGroup 125, 128

Android Virtual Device. See AVD

overview 31

Android Virtual Device Manager 31

android.webkit 85

android.widget 85

AndroidX libraries 748

API Key 635

APK analyzer 712

APK file 705

APK File

analyzing 712

APK Signing 748

APK Wizard dialog 704

App Architecture

modern 265

AppBar

anatomy of 417

appbar_scrolling_view_behavior 419

App Bundles 701

757

Index
creating 705

overview 701

revisions 711

uploading 708

AppCompatActivity class 104

App Inspector 57

Application

stopping 36

Application Context 89

Application Framework 85

Application Manifest 89

Application Resources 89

App Link

Adding Intent Filter 688

Digital Asset Links file 680, 443

Intent Filter Handling 689

Intent Filters 679

Intent Handling 680

Testing 692

URL Mapping 685

App Links 679

auto verification 442

autoVerify 443

overview 679

Apply Changes 211

Apply Changes and Restart Activity 211

Apply Code Changes 211

fallback settings 213

options 211

Run App 211

tutorial 213

applyToActivitiesIfAvailable() method 743

Architecture Components 265

ART 84

assetlinks.json , 680, 443

Attribute Keyframes 342

Audio

supported formats 621

Audio Playback 621

Audio Recording 621

Autoconnect Mode 159

Automatic Link Verification 442, 465

autoVerify 443, 688

AVD

cold boot 48

command-line creation 31

creation 31

device frame 40

Display mode 51

launch in tool window 40

overview 31

quickboot 48

Resizable 50

running an application 34

Snapshots 47

standalone 37

starting 33

Startup size and orientation 34

B
Background Process 98

Barriers 152

adding 171

constrained views 152

Baseline Alignment 151

beginTransaction() method 248

BillingClient 720

acknowledgePurchase() method 719

consumeAsync() method 719

getPurchaseState() method 719

initialization 716, 726

launchBillingFlow() method 718

queryProductDetailsAsync() method 718

queryPurchasesAsync() method 720

BillingResult 733

getDebugMessage() 733

Binding Expressions 289

one-way 289

two-way 290

BIND_JOB_SERVICE permission 437

bindService() method 435, 477, 482

Biometric Authentication 693

callbacks 697

overview 693

758

Index

tutorial 693

Biometric Prompt 698

BitmapFactory 589

black activity 16

Blank template 129

Blueprint view 157

BODY_SENSORS permission 504

Bound Service 435, 477

adding to a project 478

Implementing the Binder 478

Interaction options 477

BoundService class 479

Broadcast Intent 469

example 472

overview 88, 469

sending 472

Sticky 471

Broadcast Receiver 469

adding to manifest file 474

creation 473

overview 88, 470

BroadcastReceiver class 470

BroadcastReceiver superclass 473

BufferedReader object 599

Build tool window 58

Build Variants , 58

tool window 58

Bundle class 120

Bundled Notifications 523

C
Calendar permissions 504

CALL_PHONE permission 504

CAMERA permission 504

Camera permissions 504

CameraUpdateFactory class

methods 645

CancellationSignal 698

Canvas class 674

CardView

layout file 397

responding to selection of 406

CardView class 397

CATEGORY_OPENABLE 588

C/C++ Libraries 85

Chain bias 180

chain head 150

chains 150

Chains

creation of 177

Chain style

changing 179

chain styles 150

CheckBox 125

checkSelfPermission() method 508

Circle class 631

Code completion 74

Code Editor

basics 71

Code completion 74

Code Generation 77

Code Reformatting 79

Document Tabs 72

Editing area 72

Gutter Area 72

Live Templates 80

Splitting 74

Statement Completion 76

Status Bar 73

Code Generation 77

code samples

download 1

cold boot 48

CollapsingToolbarLayout

example 420

introduction 420

parallax mode 420

pin mode 420

setting scrim color 423

setting title 423

with image 420

Color class 675

COLOR_MODE_COLOR 650, 670

COLOR_MODE_MONOCHROME 650, 670

759

Index
Common Gestures 229

detection 229

Component tree 20

Constraint Bias 149

adjusting 163

ConstraintLayout

advantages of 155

Availability 156

Barriers 152

Baseline Alignment 151

chain bias 180

chain head 150

chains 150

chain styles 150

Constraint Bias 149

Constraints 147

conversion to 175

convert to MotionLayout 349

deleting constraints 162

guidelines 169

Guidelines 152

manual constraint manipulation 159

Margins 148, 163

Opposing Constraints 148, 165

overview of 147

Packed chain 151, 180

ratios 155, 181

Spread chain 150

Spread inside 180

Spread inside chain 150

tutorial 185

using in Android Studio 157

Weighted chain 150, 180

Widget Dimensions 151, 167

Widget Group Alignment 173

ConstraintLayout chains

creation of 177

in layout editor 177

ConstraintLayout Chain style

changing 179

Constraints

deleting 162

ConstraintSet

addToHorizontalChain() method 200

addToVerticalChain() method 200

alignment constraints 199

apply to layout 198

applyTo() method 198

centerHorizontally() method 199

centerVertically() method 199

chains 199

clear() method 200

clone() method 199

connect() method 198

connect to parent 198

constraint bias 199

copying constraints 199

create 198

create connection 198

createHorizontalChain() method 199

createVerticalChain() method 199

guidelines 200

removeFromHorizontalChain() method 200

removeFromVerticalChain() method 200

removing constraints 200

rotation 201

scaling 200

setGuidelineBegin() method 200

setGuidelineEnd() method 200

setGuidelinePercent() method 200

setHorizonalBias() method 199

setRotationX() method 201

setRotationY() method 201

setScaleX() method 200

setScaleY() method 200

setTransformPivot() method 201

setTransformPivotX() method 201

setTransformPivotY() method 201

setVerticalBias() method 199

sizing constraints 199

tutorial 203

view IDs 205

ConstraintSet class 197, 198

Constraint Sets 198

760

Index

ConstraintSets

configuring 338

consumeAsync() method 719

ConsumeParams 731

ConsumeResponseListener 719

Contacts permissions 504

container view 125

Content Provider 86

overview 89

Context class 89

CoordinatorLayout 126, 419

createPrintDocumentAdapter() method 665

Custom Attribute 339

Custom Document Printing 653, 665

Custom Gesture

recognition 235

Custom Print Adapter

implementation 667

Custom Print Adapters 665

Custom Theme

building 737

Cycle Editor 367

Cycle Keyframe 347

Cycle Keyframes

overview 363

D
dangerous permissions

list of 504

Dark Theme 36

enable on device 36

Data Access Object (DAO) 554

Data Access Objects (DAO) 558

Database Inspector 561, 584

live updates 585

SQL query 585

Database Rows 548

Database Schema 547

Database Tables 547

Data binding

binding expressions 289

Data Binding 267

binding classes 288

enabling 294

event and listener binding 290

key components 285

overview 285

tutorial 293

with LiveData 267

DDMS 36

Debugging

enabling on device 63

debug.keystore file 443, 465

DefaultLifecycleObserver 308, 311

deltaRelative 343

Density-independent pixels 193

Density Independent Pixels

converting to pixels 208

Device Definition

custom 143

Device File Explorer 58

device frame 40

Device Mirroring 69

enabling 69

device pairing 67

Digital Asset Links file 680, 443, 443

Direct Reply Input 534

document provider 587

dp 193

Dynamic Colors

applyToActivitiesIfAvailable() method 743

enabling in Android 743

Dynamic State 105

saving 119

E
Empty Process 99

Empty template 129

Emulator

battery 46

cellular configuration 46

configuring fingerprints 48

directional pad 46

extended control options 45

761

Index
Extended controls 45

fingerprint 46

location configuration 46

phone settings 46

Resizable 50

resize 45

rotate 44

Screen Record 47

Snapshots 47

starting 33

take screenshot 44

toolbar 43

toolbar options 43

tool window mode 50

Virtual Sensors 47

zoom 44

enablePendingPurchases() method 719

enabling ADB support 63

ettings.gradle file 748

Event Handling 215

example 216

Event Listener 217

Event Listeners 216

Events

consuming 219

explicit

intent 88

explicit intent 439

Explicit Intent 439

Extended Control

options 45

F
Files

switching between 72

findPointerIndex() method 222

findViewById() 91

Fingerprint

emulation 48

Fingerprint authentication

device configuration 694

permission 694

steps to implement 693

Fingerprint Authentication

overview 693

tutorial 693

FLAG_INCLUDE_STOPPED_PACKAGES 469

flexible space area 417

floating action button 16, 130

changing appearance of 378

margins 376

removing 131

sizes 376

Foldable Devices 108

multi-resume 108

Foldable Emulator 540

Foldables 539

Foreground Process 98

Forward-geocoding 637

Fragment

creation 245

event handling 249

XML file 246

FragmentActivity class 104

Fragment Communication 250

Fragments 245

adding in code 248

duplicating 386

example 253

overview 245

FragmentStateAdapter class 389

FrameLayout 126

G
Geocoder object 638

Geocoding 636

Gesture Builder Application 235

building and running 235

Gesture Detector class 229

GestureDetectorCompat 232

instance creation 232

GestureDetectorCompat class 229

GestureDetector.OnDoubleTapListener 229, 230

GestureDetector.OnGestureListener 230

762

Index

GestureLibrary 235

GestureOverlayView 235

configuring color 240

configuring multiple strokes 240

GestureOverlayView class 235

GesturePerformedListener 235

Gestures

interception of 241

Gestures File

creation 236

extract from SD card 236

loading into application 238

GET_ACCOUNTS permission 504

getAction() method 475

getDebugMessage() 733

getFromLocation() method 638

getId() method 198

getIntent() method 440

getPointerCount() method 222

getPointerId() method 222

getPurchaseState() method 719

getService() method 482

GNU/Linux 84

Google Cloud

billing account 632

new project 633

Google Cloud Print 648

Google Drive 588

printing to 648

GoogleMap 631

map types 641

GoogleMap.MAP_TYPE_HYBRID 641

GoogleMap.MAP_TYPE_NONE 641

GoogleMap.MAP_TYPE_NORMAL 641

GoogleMap.MAP_TYPE_SATELLITE 641

GoogleMap.MAP_TYPE_TERRAIN 641

Google Maps Android API 631

Controlling the Map Camera 645

displaying controls 642

Map Markers 644

overview 631

Google Maps SDK 631

API Key 635

Credentials 635

enabling 634

Maps SDK for Android 635

Google Play App Signing 704

Google Play Console 724

Creating an in-app product 724

License Testers 725

Google Play Developer Console 702

Gradle

APK signing settings 752

Build Variants 748

command line tasks 753

dependencies 747

Manifest Entries 748

overview 747

sensible defaults 747

Gradle Build File

top level 749

Gradle Build Files

module level 750

gradle.properties file 748

GridLayout 126

GridLayoutManager 395

H
Handler class 486

HP Print Services Plugin 647

HTML printing 651

HTML Printing

example 655

I
IBinder 435, 479

IBinder object 477, 487

Image Printing 650

implicit

intent 88

implicit intent 439

Implicit Intent 441

Implicit Intents

example 457

763

Index
importance hierarchy 97

in 193

INAPP 720

In-App Products 715

In-App Purchasing 723

acknowledgePurchase() method 719

BillingClient 716

BillingResult 733

consumeAsync() method 719

ConsumeParams 731

ConsumeResponseListener 719

Consuming purchases 730

enablePendingPurchases() method 719

getPurchaseState() method 719

launchBillingFlow() method 718

Libraries 723

newBuilder() method 716

onBillingServiceDisconnected() callback 728

onBillingServiceDisconnected() method 717

onBillingSetupFinished() listener 728

onProductDetailsResponse() callback 728

Overview 715

ProductDetail 718

ProductDetails 729

products 715

ProductType 720

ProductType.INAPP 720

ProductType.SUBS 720

Purchase Flow 729

PurchaseResponseListener 720

PurchasesUpdatedListener 719

PurchaseUpdatedListener 729

purchase updates 729

queryProductDetailsAsync() 728

queryProductDetailsAsync() method 718

queryPurchasesAsync() 731

queryPurchasesAsync() method 720

runOnUiThread() 729

subscriptions 715

tutorial 723

In-Memory Database 561

Intent 88

explicit 88

implicit 88

Intent Availability

checking for 446

Intent.CATEGORY_OPENABLE 596

Intent Filters 442

App Link 679

Intents 439

ActivityResultLauncher 441

overview 439

registerForActivityResult() 454

Intent Service 435

Intent URL 460

J
Java Native Interface 85

Jetpack 265

overview 265

JobIntentService 435

BIND_JOB_SERVICE permission 437

onHandleWork() method 435

K
KeyAttribute 342

Keyboard Shortcuts 59

KeyCycle 363

Cycle Editor 367

tutorial 363

Keyframe 356

Keyframes 342

KeyFrameSet 372

KeyPosition 343

deltaRelative 343

parentRelative 343

pathRelative 344

Keystore File

creation 704

KeyTimeCycle 363

keytool 443

KeyTrigger 346

Killed state 100

764

Index

L
launchBillingFlow() method 718

layout_collapseMode

parallax 422

pin 422

layout_constraintDimentionRatio 182

layout_constraintHorizontal_bias 180

layout_constraintVertical_bias 180

layout editor

ConstraintLayout chains 177

Layout Editor 19, 185

Autoconnect Mode 159

code mode 136

Component Tree 134

design mode 133

device screen 134

example project 185

Inference Mode 159

palette 134

properties panel 134

Sample Data 142

Setting Properties 138

toolbar 134

user interface design 185

view conversion 141

Layout Editor Tool

changing orientation 20

overview 133

Layout Inspector 58

Layout Managers 125

LayoutResultCallback object 670

Layouts 125

layout_scrollFlags

enterAlwaysCollapsed mode 419

enterAlways mode 419

exitUntilCollapsed mode 419

scroll mode 419

Layout Validation 144

libc 85

License Testers 725

Lifecycle

awareness 307

components 268

owners 307

states and events 309

tutorial 311

Lifecycle-Aware Components 307

Lifecycle Methods 106

Lifecycle Observer 311

creating a 311

Lifecycle Owner

creating a 313

Lifecycles

modern 268

LinearLayout 126

LinearLayoutManager 395

LinearLayoutManager layout 404

Linux Kernel 84

list devices 63

LiveData 266, 279

adding to ViewModel 279

observer 281

tutorial 279

Live Templates 80

Local Bound Service 477

example 477

Location Manager 86

Location permission 504

Logcat

tool window 57

LogCat

enabling 115

M
MANAGE_EXTERNAL_STORAGE 505

adb enabling 505

testing 505

Manifest File

permissions 461

Maps 631

MapView 631

adding to a layout 638

Marker class 631

Master/Detail Flow

765

Index
creation 426

two pane mode 425

match_parent properties 193

Material design 375

Material Design 2 735

Material Design 2 Theming 735

Material Design 3 735

Material Theme Builder 737

Material You 735

MediaController

adding to VideoView instance 605

MediaController class 602

methods 602

MediaPlayer class 621

methods 621

MediaRecorder class 621

methods 622

recording audio 622

Memory Indicator 73

Messenger object 487

Microphone

checking for availability 624

Microphone permissions 504

mm 193

MotionEvent 221, 222, 243

getActionMasked() 222

MotionLayout 337

arc motion 342

Attribute Keyframes 342

ConstraintSets 338

Custom Attribute 358

Custom Attributes 339

Cycle Editor 367

Editor 349

KeyAttribute 342

KeyCycle 363

Keyframes 342

KeyFrameSet 372

KeyPosition 343

KeyTimeCycle 363

KeyTrigger 346

OnClick 341, 354

OnSwipe 341

overview 337

Position Keyframes 343

previewing animation 354

Trigger Keyframe 346

Tutorial 349

MotionScene

ConstraintSets 338

Custom Attributes 339

file 338

overview 337

transition 338

moveCamera() method 645

multiple devices

testing app on 35

Multiple Touches

handling 222

multi-resume 108

Multi-Touch

example 222

Multi-touch Event Handling 221

Multi-Window

attributes 543

Multi-Window Mode

detecting 544

entering 541

launching activity into 545

Multi-Window Notifications 544

multi-window support 108

Multi-Window Support

enabling 542

My Location Layer 631

N
Navigation 317

adding destinations 326

overview 317

pass data with safeargs 333

passing arguments 322

stack 317

tutorial 323

Navigation Action

766

Index

triggering 321

Navigation Architecture Component 317

Navigation Component

tutorial 323

Navigation Controller

accessing 321

Navigation Graph 320, 324

adding actions 329

creating a 324

Navigation Host 318

declaring 325

newBuilder() method 716

normal permissions 503

Notification

adding actions 522

Direct Reply Input 534

issuing a basic 518

launch activity from a 520

PendingIntent 530

Reply Action 532

updating direct reply 535

Notifications

bundled 523

overview 511

Notifications Manager 86

O
Observer

implementing a LiveData 281

onAttach() method 250

onBillingServiceDisconnected() callback 728

onBillingServiceDisconnected() method 717

onBillingSetupFinished() listener 728

onBind() method 436, 477

onBindViewHolder() method 403

OnClick 341

onClickListener 216, 217, 220

onClick() method 215

onCreateContextMenuListener 216

onCreate() method 98, 106, 436

onCreateView() method 107

onDestroy() method 106, 436

onDoubleTap() method 229

onDown() method 229

onFling() method 229

onFocusChangeListener 216

OnFragmentInteractionListener

implementation 331

onGesturePerformed() method 235

onHandleWork() method 436

onKeyListener 216

onLayoutFailed() method 670

onLayoutFinished() method 671

onLongClickListener 216

onLongClick() method 219

onLongPress() method 229

onMapReady() method 640

onPageFinished() callback 656

onPause() method 106

onProductDetailsResponse() callback 728

onReceive() method 98, 470, 471, 473

onRequestPermissionsResult() method 507, 628, 516, 528

onRestart() method 106

onRestoreInstanceState() method 107

onResume() method 98, 106

onSaveInstanceState() method 107

onScaleBegin() method 241

onScaleEnd() method 241

onScale() method 241

onScroll() method 229

OnSeekBarChangeListener 260

onServiceConnected() method 477, 481, 488

onServiceDisconnected() method 477, 481, 488

onShowPress() method 229

onSingleTapUp() method 229

onStartCommand() method 436

onStart() method 106

onStop() method 106

onTouchEvent() method 229, 241

onTouchListener 216

onTouch() method 221

onViewCreated() method 107

onViewStatusRestored() method 107

openFileDescriptor() method 588

767

Index
OpenJDK 3

P
Package Explorer 18

Package Manager 86

PackageManager class 624

PackageManager.FEATURE_MICROPHONE 624

PackageManager.PERMISSION_DENIED 505

PackageManager.PERMISSION_GRANTED 505

Package Name 16

Packed chain 151, 180

PageRange 672, 673

Paint class 675

parentRelative 343

parent view 127

pathRelative 344

Paused state 100

PdfDocument 653

PdfDocument.Page 665, 672

PendingIntent class 530

Permission

checking for 505

permissions

normal 503

Persistent State 105

Phone permissions 504

picker 587

Pinch Gesture

detection 241

example 241

Pinch Gesture Recognition 235

Position Keyframes 343

POST_NOTIFICATIONS permission 504, 528

PrintAttributes 670

PrintDocumentAdapter 653, 665

Printing

color 650

monochrome 650

Printing framework

architecture 647

Printing Framework 647

Print Job

starting 676

PrintManager service 657

Problems

tool window 58

process

priority 97

state 97

PROCESS_OUTGOING_CALLS permission 504

Process States 97

ProductDetail 718

ProductDetails 729

ProductType 720

Profiler

tool window 58

ProgressBar 125

proguard-rules.pro file 752

ProGuard Support 748

Project Name 16

Project tool window 18, 57

pt 193

PurchaseResponseListener 720

PurchasesUpdatedListener 719

PurchaseUpdatedListener 729

putExtra() method 439, 469

px 194

Q
queryProductDetailsAsync() 728

queryProductDetailsAsync() method 718

queryPurchaseHistoryAsync() method 720

queryPurchasesAsync() 731

queryPurchasesAsync() method 720

quickboot snapshot 48

Quick Documentation 79

R
RadioButton 125

ratios 181

READ_CALENDAR permission 504

READ_CALL_LOG permission 504

READ_CONTACTS permission 504

READ_EXTERNAL_STORAGE permission 505

768

Index

READ_PHONE_STATE permission 504

READ_SMS permission 504

RECEIVE_MMS permission 504

RECEIVE_SMS permission 504

RECEIVE_WAP_PUSH permission 504

Recent Files Navigation 60

RECORD_AUDIO permission 504

Recording Audio

permission 623

RecyclerView 395

adding to layout file 396

GridLayoutManager 395

initializing 404

LinearLayoutManager 395

StaggeredGridLayoutManager 395

RecyclerView Adapter

creation of 402

RecyclerView.Adapter 396, 402

getItemCount() method 396

onBindViewHolder() method 396

onCreateViewHolder() method 396

RecyclerView.ViewHolder

getAdapterPosition() method 406

registerForActivityResult() method 440, 454

registerReceiver() method 471

RelativeLayout 126

releasePersistableUriPermission() method 591

Release Preparation 701

Remote Bound Service 485

client communication 485

implementation 485

manifest file declaration 487

RemoteInput.Builder() method 530

RemoteInput Object 530

Remote Service

launching and binding 488

sending a message 489

Repository

tutorial 571

Repository Modules 268

Resizable Emulator 50

Resource

string creation 23

Resource File 25

Resource Management 97

Resource Manager , 57

result receiver 471

Reverse-geocoding 637

Reverse Geocoding 636

Room

Data Access Object (DAO) 554

entities 554, 555

In-Memory Database 561

Repository 554

Room Database 554

tutorial 571

Room Database Persistence 553

Room Persistence Library 550, 553

root element 125

root view 127

Run

tool window 57

Running Devices

tool window 69

runOnUiThread() 729

S
safeargs

Sample Data 142, 409

tutorial 409

Saved State 267, 301

library dependencies 303

SavedStateHandle 302, 303

contains() method 303

keys() method 303

remove() method 303

Saved State module 301

SavedStateViewModelFactory 302

ScaleGestureDetector class 241

Scale-independent 193

SDK Packages 6

Secure Sockets Layer (SSL) 85

SeekBar 253

sendBroadcast() method 469, 471

769

Index
sendOrderedBroadcast() method 469, 471

SEND_SMS permission 504

sendStickyBroadcast() method 469

Sensor permissions 504

Service

anatomy 436

launch at system start 437

manifest file entry 436

overview 88

run in separate process 437

ServiceConnection class 488

Service Process 98

Service Restart Options 436

setAudioEncoder() method 622

setAudioSource() method 622

setBackgroundColor() 198

setCompassEnabled() method 642

setContentView() method 197, 203

setId() method 198

setMyLocationButtonEnabled() method 643

setOnClickListener() method 215, 217

setOnDoubleTapListener() method 229, 232

setOutputFile() method 622

setOutputFormat() method 622

setResult() method 441

setRotateGesturesEnabled() method 643

setScrollGesturesEnabled() method 643

setText() method 122

setTiltGesturesEnabled() method 643

settings.gradle.kts file 748

setTransition() 347

setVideoSource() method 622

setZoomControlsEnabled() method 642, 643

SHA-256 certificate fingerprint 443

shouldOverrideUrlLoading() method 656

SimpleOnScaleGestureListener 241

SimpleOnScaleGestureListener class 243

SMS permissions 504

Snackbar 375, 376, 377

Snapshots

emulator 47

sp 193

Spread chain 150

Spread inside 180

Spread inside chain 150

SQL 548

SQLite 547

AVD command-line use 549

Columns and Data Types 547

overview 548

Primary keys 548

StaggeredGridLayoutManager 395

startActivity() method 439

startForeground() method 98

START_NOT_STICKY 436

START_REDELIVER_INTENT 436

START_STICKY 436

State

restoring 122

State Change

handling 101

Statement Completion 76

Status Bar Widgets 73

Memory Indicator 73

Sticky Broadcast Intents 471

Stopped state 100

Storage Access Framework 587

ACTION_CREATE_DOCUMENT 588

ACTION_OPEN_DOCUMENT 588

deleting a file 591

example 593

file creation 596

file filtering 588

file reading 589

file writing 590

intents 588

MIME Types 589

Persistent Access 591

picker 587

Storage permissions 505

StringBuilder object 599

strings.xml file 27

Structure

tool window 58

770

Index

Structured Query Language 548

Structure tool window 58

SUBS 720

subscriptions 715

SupportMapFragment class 631

Switcher 60

System Broadcasts 475

system requirements 3

T
TabLayout

adding to layout 387

app

tabGravity property 393

tabMode property 392

example 384

fixed mode 392

getItemCount() method 383

overview 383

TableLayout 126, 563

TableRow 563

Telephony Manager 86

Templates

blank vs. empty 129

Terminal

tool window 58

Theme

building a custom 737

Theming 735

tutorial 739

Time Cycle Keyframes 347

TODO

tool window 59

ToolbarListener 250

tools

layout 247

Tool window bars 56

Tool windows 56

Touch Actions 222

Touch Event Listener

implementation 223

Touch Events

intercepting 221

Touch handling 221

U
UiSettings class 631

unbindService() method 435

unregisterReceiver() method 471

upload key 704

URL Mapping 685

USB connection issues

resolving 66

USE_BIOMETRIC 694

user interface state 105

USE_SIP permission 504

V
Video Playback 601

VideoView class 601

methods 601

supported formats 601

view bindings

enabling 92

using 92

View class

setting properties 204

view conversion 141

ViewGroup 125

View Groups 125

View Hierarchy 127

ViewHolder class 396

sample implementation 403

ViewModel

adding LiveData 279

data access 276

overview 266

saved state 301

Saved State 267, 301

tutorial 271

ViewModelProvider 274

ViewModel Saved State 301

ViewPager

adding to layout 387

771

Index
example 384

Views 125

Java creation 197

View System 86

Virtual Device Configuration dialog 32

Virtual Sensors 47

Visible Process 98

W
WebViewClient 651, 656

WebView view 459

Weighted chain 150, 180

Welcome screen 53

Widget Dimensions 151

Widget Group Alignment 173

Widgets palette 186

WiFi debugging 67

Wireless debugging 67

Wireless pairing 67

wrap_content properties 195

WRITE_CALENDAR permission 504

WRITE_CALL_LOG permission 504

WRITE_CONTACTS permission 504

WRITE_EXTERNAL_STORAGE permission 505

X
XML Layout File

manual creation 193

vs. Java Code 197

	1. Introduction
	1.1 Downloading the Code Samples
	1.2 Feedback
	1.3 Errata

	2. Setting up an Android Studio Development Environment
	2.1 System requirements
	2.2 Downloading the Android Studio package
	2.3 Installing Android Studio
	2.3.1 Installation on Windows
	2.3.2 Installation on macOS
	2.3.3 Installation on Linux

	2.4 The Android Studio setup wizard
	2.5 Installing additional Android SDK packages
	2.6 Installing the Android SDK Command-line Tools
	2.6.1 Windows 8.1
	2.6.2 Windows 10
	2.6.3 Windows 11
	2.6.4 Linux
	2.6.5 macOS

	2.7 Android Studio memory management
	2.8 Updating Android Studio and the SDK
	2.9 Summary

	3. Creating an Example Android App in Android Studio
	3.1 About the Project
	3.2 Creating a New Android Project
	3.3 Creating an Activity
	3.4 Defining the Project and SDK Settings
	3.5 Enabling the New Android Studio UI
	3.6 Modifying the Example Application
	3.7 Modifying the User Interface
	3.8 Reviewing the Layout and Resource Files
	3.9 Adding Interaction
	3.10 Summary

	4. Creating an Android Virtual Device (AVD) in Android Studio
	4.1 About Android Virtual Devices
	4.2 Starting the Emulator
	4.3 Running the Application in the AVD
	4.4 Running on Multiple Devices
	4.5 Stopping a Running Application
	4.6 Supporting Dark Theme
	4.7 Running the Emulator in a Separate Window
	4.8 Enabling the Device Frame
	4.9 Summary

	5. Using and Configuring the Android Studio AVD Emulator
	5.1 The Emulator Environment
	5.2 Emulator Toolbar Options
	5.3 Working in Zoom Mode
	5.4 Resizing the Emulator Window
	5.5 Extended Control Options
	5.5.1 Location
	5.5.2 Displays
	5.5.3 Cellular
	5.5.4 Battery
	5.5.5 Camera
	5.5.6 Phone
	5.5.7 Directional Pad
	5.5.8 Microphone
	5.5.9 Fingerprint
	5.5.10 Virtual Sensors
	5.5.11 Snapshots
	5.5.12 Record and Playback
	5.5.13 Google Play
	5.5.14 Settings
	5.5.15 Help

	5.6 Working with Snapshots
	5.7 Configuring Fingerprint Emulation
	5.8 The Emulator in Tool Window Mode
	5.9 Creating a Resizable Emulator
	5.10 Summary

	6. A Tour of the Android Studio User Interface
	6.1 The Welcome Screen
	6.2 The Menu Bar
	6.3 The Main Window
	6.4 The Tool Windows
	6.5 The Tool Window Menus
	6.6 Android Studio Keyboard Shortcuts
	6.7 Switcher and Recent Files Navigation
	6.8 Changing the Android Studio Theme
	6.9 Summary

	7. Testing Android Studio Apps on a Physical Android Device
	7.1 An Overview of the Android Debug Bridge (ADB)
	7.2 Enabling USB Debugging ADB on Android Devices
	7.2.1 macOS ADB Configuration
	7.2.2 Windows ADB Configuration
	7.2.3 Linux adb Configuration

	7.3 Resolving USB Connection Issues
	7.4 Enabling Wireless Debugging on Android Devices
	7.5 Testing the adb Connection
	7.6 Device Mirroring
	7.7 Summary

	8. The Basics of the Android Studio Code Editor
	8.1 The Android Studio Editor
	8.2 Splitting the Editor Window
	8.3 Code Completion
	8.4 Statement Completion
	8.5 Parameter Information
	8.6 Parameter Name Hints
	8.7 Code Generation
	8.8 Code Folding
	8.9 Quick Documentation Lookup
	8.10 Code Reformatting
	8.11 Finding Sample Code
	8.12 Live Templates
	8.13 Summary

	9. An Overview of the Android Architecture
	9.1 The Android Software Stack
	9.2 The Linux Kernel
	9.3 Android Runtime – ART
	9.4 Android Libraries
	9.4.1 C/C++ Libraries

	9.5 Application Framework
	9.6 Applications
	9.7 Summary

	10. The Anatomy of an Android App
	10.1 Android Activities
	10.2 Android Fragments
	10.3 Android Intents
	10.4 Broadcast Intents
	10.5 Broadcast Receivers
	10.6 Android Services
	10.7 Content Providers
	10.8 The Application Manifest
	10.9 Application Resources
	10.10 Application Context
	10.11 Summary

	11. An Overview of Android View Binding
	11.1 Find View by Id
	11.2 View Binding
	11.3 Converting the AndroidSample project
	11.4 Enabling View Binding
	11.5 Using View Binding
	11.6 Choosing an Option
	11.7 View Binding in the Book Examples
	11.8 Migrating a Project to View Binding
	11.9 Summary

	12. Understanding Android Application and Activity Lifecycles
	12.1 Android Applications and Resource Management
	12.2 Android Process States
	12.2.1 Foreground Process
	12.2.2 Visible Process
	12.2.3 Service Process
	12.2.4 Background Process
	12.2.5 Empty Process

	12.3 Inter-Process Dependencies
	12.4 The Activity Lifecycle
	12.5 The Activity Stack
	12.6 Activity States
	12.7 Configuration Changes
	12.8 Handling State Change
	12.9 Summary

	13. Handling Android Activity State Changes
	13.1 New vs. Old Lifecycle Techniques
	13.2 The Activity and Fragment Classes
	13.3 Dynamic State vs. Persistent State
	13.4 The Android Lifecycle Methods
	13.5 Lifetimes
	13.6 Foldable Devices and Multi-Resume
	13.7 Disabling Configuration Change Restarts
	13.8 Lifecycle Method Limitations
	13.9 Summary

	14. Android Activity State Changes by Example
	14.1 Creating the State Change Example Project
	14.2 Designing the User Interface
	14.3 Overriding the Activity Lifecycle Methods
	14.4 Filtering the Logcat Panel
	14.5 Running the Application
	14.6 Experimenting with the Activity
	14.7 Summary

	15. Saving and Restoring the State of an Android Activity
	15.1 Saving Dynamic State
	15.2 Default Saving of User Interface State
	15.3 The Bundle Class
	15.4 Saving the State
	15.5 Restoring the State
	15.6 Testing the Application
	15.7 Summary

	16. Understanding Android Views, View Groups and Layouts
	16.1 Designing for Different Android Devices
	16.2 Views and View Groups
	16.3 Android Layout Managers
	16.4 The View Hierarchy
	16.5 Creating User Interfaces
	16.6 Summary

	17. A Guide to the Android Studio Layout Editor Tool
	17.1 Basic vs. Empty Views Activity Templates
	17.2 The Android Studio Layout Editor
	17.3 Design Mode
	17.4 The Palette
	17.5 Design Mode and Layout Views
	17.6 Night Mode
	17.7 Code Mode
	17.8 Split Mode
	17.9 Setting Attributes
	17.10 Transforms
	17.11 Tools Visibility Toggles
	17.12 Converting Views
	17.13 Displaying Sample Data
	17.14 Creating a Custom Device Definition
	17.15 Changing the Current Device
	17.16 Layout Validation
	17.17 Summary

	18. A Guide to the Android ConstraintLayout
	18.1 How ConstraintLayout Works
	18.1.1 Constraints
	18.1.2 Margins
	18.1.3 Opposing Constraints
	18.1.4 Constraint Bias
	18.1.5 Chains
	18.1.6 Chain Styles

	18.2 Baseline Alignment
	18.3 Configuring Widget Dimensions
	18.4 Guideline Helper
	18.5 Group Helper
	18.6 Barrier Helper
	18.7 Flow Helper
	18.8 Ratios
	18.9 ConstraintLayout Advantages
	18.10 ConstraintLayout Availability
	18.11 Summary

	19. A Guide to Using ConstraintLayout in Android Studio
	19.1 Design and Layout Views
	19.2 Autoconnect Mode
	19.3 Inference Mode
	19.4 Manipulating Constraints Manually
	19.5 Adding Constraints in the Inspector
	19.6 Viewing Constraints in the Attributes Window
	19.7 Deleting Constraints
	19.8 Adjusting Constraint Bias
	19.9 Understanding ConstraintLayout Margins
	19.10 The Importance of Opposing Constraints and Bias
	19.11 Configuring Widget Dimensions
	19.12 Design Time Tools Positioning
	19.13 Adding Guidelines
	19.14 Adding Barriers
	19.15 Adding a Group
	19.16 Working with the Flow Helper
	19.17 Widget Group Alignment and Distribution
	19.18 Converting other Layouts to ConstraintLayout
	19.19 Summary

	20. Working with ConstraintLayout Chains and Ratios in Android Studio
	20.1 Creating a Chain
	20.2 Changing the Chain Style
	20.3 Spread Inside Chain Style
	20.4 Packed Chain Style
	20.5 Packed Chain Style with Bias
	20.6 Weighted Chain
	20.7 Working with Ratios
	20.8 Summary

	21. An Android Studio Layout Editor ConstraintLayout Tutorial
	21.1 An Android Studio Layout Editor Tool Example
	21.2 Preparing the Layout Editor Environment
	21.3 Adding the Widgets to the User Interface
	21.4 Adding the Constraints
	21.5 Testing the Layout
	21.6 Using the Layout Inspector
	21.7 Summary

	22. Manual XML Layout Design in Android Studio
	22.1 Manually Creating an XML Layout
	22.2 Manual XML vs. Visual Layout Design
	22.3 Summary

	23. Managing Constraints using Constraint Sets
	23.1 Java Code vs. XML Layout Files
	23.2 Creating Views
	23.3 View Attributes
	23.4 Constraint Sets
	23.4.1 Establishing Connections
	23.4.2 Applying Constraints to a Layout
	23.4.3 Parent Constraint Connections
	23.4.4 Sizing Constraints
	23.4.5 Constraint Bias
	23.4.6 Alignment Constraints
	23.4.7 Copying and Applying Constraint Sets
	23.4.8 ConstraintLayout Chains
	23.4.9 Guidelines
	23.4.10 Removing Constraints
	23.4.11 Scaling
	23.4.12 Rotation

	23.5 Summary

	24. An Android ConstraintSet Tutorial
	24.1 Creating the Example Project in Android Studio
	24.2 Adding Views to an Activity
	24.3 Setting View Attributes
	24.4 Creating View IDs
	24.5 Configuring the Constraint Set
	24.6 Adding the EditText View
	24.7 Converting Density Independent Pixels (dp) to Pixels (px)
	24.8 Summary

	25. A Guide to Using Apply Changes in Android Studio
	25.1 Introducing Apply Changes
	25.2 Understanding Apply Changes Options
	25.3 Using Apply Changes
	25.4 Configuring Apply Changes Fallback Settings
	25.5 An Apply Changes Tutorial
	25.6 Using Apply Code Changes
	25.7 Using Apply Changes and Restart Activity
	25.8 Using Run App
	25.9 Summary

	26. An Overview and Example of Android Event Handling
	26.1 Understanding Android Events
	26.2 Using the android:onClick Resource
	26.3 Event Listeners and Callback Methods
	26.4 An Event Handling Example
	26.5 Designing the User Interface
	26.6 The Event Listener and Callback Method
	26.7 Consuming Events
	26.8 Summary

	27. Android Touch and Multi-touch Event Handling
	27.1 Intercepting Touch Events
	27.2 The MotionEvent Object
	27.3 Understanding Touch Actions
	27.4 Handling Multiple Touches
	27.5 An Example Multi-Touch Application
	27.6 Designing the Activity User Interface
	27.7 Implementing the Touch Event Listener
	27.8 Running the Example Application
	27.9 Summary

	28. Detecting Common Gestures Using the Android Gesture Detector Class
	28.1 Implementing Common Gesture Detection
	28.2 Creating an Example Gesture Detection Project
	28.3 Implementing the Listener Class
	28.4 Creating the GestureDetectorCompat Instance
	28.5 Implementing the onTouchEvent() Method
	28.6 Testing the Application
	28.7 Summary

	29. Implementing Custom Gesture and Pinch Recognition on Android
	29.1 The Android Gesture Builder Application
	29.2 The GestureOverlayView Class
	29.3 Detecting Gestures
	29.4 Identifying Specific Gestures
	29.5 Installing and Running the Gesture Builder Application
	29.6 Creating a Gestures File
	29.7 Creating the Example Project
	29.8 Extracting the Gestures File from the SD Card
	29.9 Adding the Gestures File to the Project
	29.10 Designing the User Interface
	29.11 Loading the Gestures File
	29.12 Registering the Event Listener
	29.13 Implementing the onGesturePerformed Method
	29.14 Testing the Application
	29.15 Configuring the GestureOverlayView
	29.16 Intercepting Gestures
	29.17 Detecting Pinch Gestures
	29.18 A Pinch Gesture Example Project
	29.19 Summary

	30. An Introduction to Android Fragments
	30.1 What is a Fragment?
	30.2 Creating a Fragment
	30.3 Adding a Fragment to an Activity using the Layout XML File
	30.4 Adding and Managing Fragments in Code
	30.5 Handling Fragment Events
	30.6 Implementing Fragment Communication
	30.7 Summary

	31. Using Fragments in Android Studio - An Example
	31.1 About the Example Fragment Application
	31.2 Creating the Example Project
	31.3 Creating the First Fragment Layout
	31.4 Migrating a Fragment to View Binding
	31.5 Adding the Second Fragment
	31.6 Adding the Fragments to the Activity
	31.7 Making the Toolbar Fragment Talk to the Activity
	31.8 Making the Activity Talk to the Text Fragment
	31.9 Testing the Application
	31.10 Summary

	32. Modern Android App Architecture with Jetpack
	32.1 What is Android Jetpack?
	32.2 The “Old” Architecture
	32.3 Modern Android Architecture
	32.4 The ViewModel Component
	32.5 The LiveData Component
	32.6 ViewModel Saved State
	32.7 LiveData and Data Binding
	32.8 Android Lifecycles
	32.9 Repository Modules
	32.10 Summary

	33. An Android ViewModel Tutorial
	33.1 About the Project
	33.2 Creating the ViewModel Example Project
	33.3 Removing Unwanted Project Elements
	33.4 Designing the Fragment Layout
	33.5 Implementing the View Model
	33.6 Associating the Fragment with the View Model
	33.7 Modifying the Fragment
	33.8 Accessing the ViewModel Data
	33.9 Testing the Project
	33.10 Summary

	34. An Android Jetpack LiveData Tutorial
	34.1 LiveData - A Recap
	34.2 Adding LiveData to the ViewModel
	34.3 Implementing the Observer
	34.4 Summary

	35. An Overview of Android Jetpack Data Binding
	35.1 An Overview of Data Binding
	35.2 The Key Components of Data Binding
	35.2.1 The Project Build Configuration
	35.2.2 The Data Binding Layout File
	35.2.3 The Layout File Data Element
	35.2.4 The Binding Classes
	35.2.5 Data Binding Variable Configuration
	35.2.6 Binding Expressions (One-Way)
	35.2.7 Binding Expressions (Two-Way)
	35.2.8 Event and Listener Bindings

	35.3 Summary

	36. An Android Jetpack Data Binding Tutorial
	36.1 Removing the Redundant Code
	36.2 Enabling Data Binding
	36.3 Adding the Layout Element
	36.4 Adding the Data Element to Layout File
	36.5 Working with the Binding Class
	36.6 Assigning the ViewModel Instance to the Data Binding Variable
	36.7 Adding Binding Expressions
	36.8 Adding the Conversion Method
	36.9 Adding a Listener Binding
	36.10 Testing the App
	36.11 Summary

	37. An Android ViewModel Saved State Tutorial
	37.1 Understanding ViewModel State Saving
	37.2 Implementing ViewModel State Saving
	37.3 Saving and Restoring State
	37.4 Adding Saved State Support to the ViewModelDemo Project
	37.5 Summary

	38. Working with Android Lifecycle-Aware Components
	38.1 Lifecycle Awareness
	38.2 Lifecycle Owners
	38.3 Lifecycle Observers
	38.4 Lifecycle States and Events
	38.5 Summary

	39. An Android Jetpack Lifecycle Awareness Tutorial
	39.1 Creating the Example Lifecycle Project
	39.2 Creating a Lifecycle Observer
	39.3 Adding the Observer
	39.4 Testing the Observer
	39.5 Creating a Lifecycle Owner
	39.6 Testing the Custom Lifecycle Owner
	39.7 Summary

	40. An Overview of the Navigation Architecture Component
	40.1 Understanding Navigation
	40.2 Declaring a Navigation Host
	40.3 The Navigation Graph
	40.4 Accessing the Navigation Controller
	40.5 Triggering a Navigation Action
	40.6 Passing Arguments
	40.7 Summary

	41. An Android Jetpack Navigation Component Tutorial
	41.1 Creating the NavigationDemo Project
	41.2 Adding Navigation to the Build Configuration
	41.3 Creating the Navigation Graph Resource File
	41.4 Declaring a Navigation Host
	41.5 Adding Navigation Destinations
	41.6 Designing the Destination Fragment Layouts
	41.7 Adding an Action to the Navigation Graph
	41.8 Implement the OnFragmentInteractionListener
	41.9 Adding View Binding Support to the Destination Fragments
	41.10 Triggering the Action
	41.11 Passing Data Using Safeargs
	41.12 Summary

	42. An Introduction to MotionLayout
	42.1 An Overview of MotionLayout
	42.2 MotionLayout
	42.3 MotionScene
	42.4 Configuring ConstraintSets
	42.5 Custom Attributes
	42.6 Triggering an Animation
	42.7 Arc Motion
	42.8 Keyframes
	42.8.1 Attribute Keyframes
	42.8.2 Position Keyframes

	42.9 Time Linearity
	42.10 KeyTrigger
	42.11 Cycle and Time Cycle Keyframes
	42.12 Starting an Animation from Code

	43. An Android MotionLayout Editor Tutorial
	43.1 Creating the MotionLayoutDemo Project
	43.2 ConstraintLayout to MotionLayout Conversion
	43.3 Configuring Start and End Constraints
	43.4 Previewing the MotionLayout Animation
	43.5 Adding an OnClick Gesture
	43.6 Adding an Attribute Keyframe to the Transition
	43.7 Adding a CustomAttribute to a Transition
	43.8 Adding Position Keyframes
	43.9 Summary

	44. A MotionLayout KeyCycle Tutorial
	44.1 An Overview of Cycle Keyframes
	44.2 Using the Cycle Editor
	44.3 Creating the KeyCycleDemo Project
	44.4 Configuring the Start and End Constraints
	44.5 Creating the Cycles
	44.6 Previewing the Animation
	44.7 Adding the KeyFrameSet to the MotionScene
	44.8 Summary

	45. Working with the Floating Action Button and Snackbar
	45.1 The Material Design
	45.2 The Design Library
	45.3 The Floating Action Button (FAB)
	45.4 The Snackbar
	45.5 Creating the Example Project
	45.6 Reviewing the Project
	45.7 Removing Navigation Features
	45.8 Changing the Floating Action Button
	45.9 Adding an Action to the Snackbar
	45.10 Summary

	46. Creating a Tabbed Interface using the TabLayout Component
	46.1 An Introduction to the ViewPager2
	46.2 An Overview of the TabLayout Component
	46.3 Creating the TabLayoutDemo Project
	46.4 Creating the First Fragment
	46.5 Duplicating the Fragments
	46.6 Adding the TabLayout and ViewPager2
	46.7 Creating the Pager Adapter
	46.8 Performing the Initialization Tasks
	46.9 Testing the Application
	46.10 Customizing the TabLayout
	46.11 Summary

	47. Working with the RecyclerView and CardView Widgets
	47.1 An Overview of the RecyclerView
	47.2 An Overview of the CardView
	47.3 Summary

	48. An Android RecyclerView and CardView Tutorial
	48.1 Creating the CardDemo Project
	48.2 Modifying the Basic Views Activity Project
	48.3 Designing the CardView Layout
	48.4 Adding the RecyclerView
	48.5 Adding the Image Files
	48.6 Creating the RecyclerView Adapter
	48.7 Initializing the RecyclerView Component
	48.8 Testing the Application
	48.9 Responding to Card Selections
	48.10 Summary

	49. A Layout Editor Sample Data Tutorial
	49.1 Adding Sample Data to a Project
	49.2 Using Custom Sample Data
	49.3 Summary

	50. Working with the AppBar and Collapsing Toolbar Layouts
	50.1 The Anatomy of an AppBar
	50.2 The Example Project
	50.3 Coordinating the RecyclerView and Toolbar
	50.4 Introducing the Collapsing Toolbar Layout
	50.5 Changing the Title and Scrim Color
	50.6 Summary

	51. An Android Studio Primary/Detail Flow Tutorial
	51.1 The Primary/Detail Flow
	51.2 Creating a Primary/Detail Flow Activity
	51.3 Adding the Primary/Detail Flow Activity
	51.4 Modifying the Primary/Detail Flow Template
	51.5 Changing the Content Model
	51.6 Changing the Detail Pane
	51.7 Modifying the ItemDetailFragment Class
	51.8 Modifying the ItemListFragment Class
	51.9 Adding Manifest Permissions
	51.10 Running the Application
	51.11 Summary

	52. An Overview of Android Services
	52.1 Intent Service
	52.2 Bound Service
	52.3 The Anatomy of a Service
	52.4 Controlling Destroyed Service Restart Options
	52.5 Declaring a Service in the Manifest File
	52.6 Starting a Service Running on System Startup
	52.7 Summary

	53. An Overview of Android Intents
	53.1 An Overview of Intents
	53.2 Explicit Intents
	53.3 Returning Data from an Activity
	53.4 Implicit Intents
	53.5 Using Intent Filters
	53.6 Automatic Link Verification
	53.7 Manually Enabling Links
	53.8 Checking Intent Availability
	53.9 Summary

	54. Android Explicit Intents – A Worked Example
	54.1 Creating the Explicit Intent Example Application
	54.2 Designing the User Interface Layout for MainActivity
	54.3 Creating the Second Activity Class
	54.4 Designing the User Interface Layout for SecondActivity
	54.5 Reviewing the Application Manifest File
	54.6 Creating the Intent
	54.7 Extracting Intent Data
	54.8 Launching SecondActivity as a Sub-Activity
	54.9 Returning Data from a Sub-Activity
	54.10 Testing the Application
	54.11 Summary

	55. Android Implicit Intents – A Worked Example
	55.1 Creating the Android Studio Implicit Intent Example Project
	55.2 Designing the User Interface
	55.3 Creating the Implicit Intent
	55.4 Adding a Second Matching Activity
	55.5 Adding the Web View to the UI
	55.6 Obtaining the Intent URL
	55.7 Modifying the MyWebView Project Manifest File
	55.8 Installing the MyWebView Package on a Device
	55.9 Testing the Application
	55.10 Manually Enabling the Link
	55.11 Automatic Link Verification
	55.12 Summary

	56. Android Broadcast Intents and Broadcast Receivers
	56.1 An Overview of Broadcast Intents
	56.2 An Overview of Broadcast Receivers
	56.3 Obtaining Results from a Broadcast
	56.4 Sticky Broadcast Intents
	56.5 The Broadcast Intent Example
	56.6 Creating the Example Application
	56.7 Creating and Sending the Broadcast Intent
	56.8 Creating the Broadcast Receiver
	56.9 Registering the Broadcast Receiver
	56.10 Testing the Broadcast Example
	56.11 Listening for System Broadcasts
	56.12 Summary

	57. Android Local Bound Services – A Worked Example
	57.1 Understanding Bound Services
	57.2 Bound Service Interaction Options
	57.3 A Local Bound Service Example
	57.4 Adding a Bound Service to the Project
	57.5 Implementing the Binder
	57.6 Binding the Client to the Service
	57.7 Completing the Example
	57.8 Testing the Application
	57.9 Summary

	58. Android Remote Bound Services – A Worked Example
	58.1 Client to Remote Service Communication
	58.2 Creating the Example Application
	58.3 Designing the User Interface
	58.4 Implementing the Remote Bound Service
	58.5 Configuring a Remote Service in the Manifest File
	58.6 Launching and Binding to the Remote Service
	58.7 Sending a Message to the Remote Service
	58.8 Summary

	59. A Basic Overview of Java Threads, Handlers and Executors
	59.1 The Application Main Thread
	59.2 Thread Handlers
	59.3 A Threading Example
	59.4 Building the App
	59.5 Creating a New Thread
	59.6 Implementing a Thread Handler
	59.7 Passing a Message to the Handler
	59.8 Java Executor Concurrency
	59.9 Working with Runnable Tasks
	59.10 Shutting down an Executor Service
	59.11 Working with Callable Tasks and Futures
	59.12 Handling a Future Result
	59.13 Scheduling Tasks
	59.14 Summary

	60. Making Runtime Permission Requests in Android
	60.1 Understanding Normal and Dangerous Permissions
	60.2 Creating the Permissions Example Project
	60.3 Checking for a Permission
	60.4 Requesting Permission at Runtime
	60.5 Providing a Rationale for the Permission Request
	60.6 Testing the Permissions App
	60.7 Summary

	61. An Android Notifications Tutorial
	61.1 An Overview of Notifications
	61.2 Creating the NotifyDemo Project
	61.3 Designing the User Interface
	61.4 Creating the Second Activity
	61.5 Creating a Notification Channel
	61.6 Requesting Notification Permission
	61.7 Creating and Issuing a Notification
	61.8 Launching an Activity from a Notification
	61.9 Adding Actions to a Notification
	61.10 Bundled Notifications
	61.11 Summary

	62. An Android Direct Reply Notification Tutorial
	62.1 Creating the DirectReply Project
	62.2 Designing the User Interface
	62.3 Requesting Notification Permission
	62.4 Creating the Notification Channel
	62.5 Building the RemoteInput Object
	62.6 Creating the PendingIntent
	62.7 Creating the Reply Action
	62.8 Receiving Direct Reply Input
	62.9 Updating the Notification
	62.10 Summary

	63. Foldable Devices and Multi-Window Support
	63.1 Foldables and Multi-Window Support
	63.2 Using a Foldable Emulator
	63.3 Entering Multi-Window Mode
	63.4 Enabling and using Freeform Support
	63.5 Checking for Freeform Support
	63.6 Enabling Multi-Window Support in an App
	63.7 Specifying Multi-Window Attributes
	63.8 Detecting Multi-Window Mode in an Activity
	63.9 Receiving Multi-Window Notifications
	63.10 Launching an Activity in Multi-Window Mode
	63.11 Configuring Freeform Activity Size and Position
	63.12 Summary

	64. An Overview of Android SQLite Databases
	64.1 Understanding Database Tables
	64.2 Introducing Database Schema
	64.3 Columns and Data Types
	64.4 Database Rows
	64.5 Introducing Primary Keys
	64.6 What is SQLite?
	64.7 Structured Query Language (SQL)
	64.8 Trying SQLite on an Android Virtual Device (AVD)
	64.9 The Android Room Persistence Library
	64.10 Summary

	65. The Android Room Persistence Library
	65.1 Revisiting Modern App Architecture
	65.2 Key Elements of Room Database Persistence
	65.2.1 Repository
	65.2.2 Room Database
	65.2.3 Data Access Object (DAO)
	65.2.4 Entities
	65.2.5 SQLite Database

	65.3 Understanding Entities
	65.4 Data Access Objects
	65.5 The Room Database
	65.6 The Repository
	65.7 In-Memory Databases
	65.8 Database Inspector
	65.9 Summary

	66. An Android TableLayout and TableRow Tutorial
	66.1 The TableLayout and TableRow Layout Views
	66.2 Creating the Room Database Project
	66.3 Converting to a LinearLayout
	66.4 Adding the TableLayout to the User Interface
	66.5 Configuring the TableRows
	66.6 Adding the Button Bar to the Layout
	66.7 Adding the RecyclerView
	66.8 Adjusting the Layout Margins
	66.9 Summary

	67. An Android Room Database and Repository Tutorial
	67.1 About the RoomDemo Project
	67.2 Modifying the Build Configuration
	67.3 Building the Entity
	67.4 Creating the Data Access Object
	67.5 Adding the Room Database
	67.6 Adding the Repository
	67.7 Adding the ViewModel
	67.8 Creating the Product Item Layout
	67.9 Adding the RecyclerView Adapter
	67.10 Preparing the Main Activity
	67.11 Adding the Button Listeners
	67.12 Adding LiveData Observers
	67.13 Initializing the RecyclerView
	67.14 Testing the RoomDemo App
	67.15 Using the Database Inspector
	67.16 Summary

	68. Accessing Cloud Storage using the Android Storage Access Framework
	68.1 The Storage Access Framework
	68.2 Working with the Storage Access Framework
	68.3 Filtering Picker File Listings
	68.4 Handling Intent Results
	68.5 Reading the Content of a File
	68.6 Writing Content to a File
	68.7 Deleting a File
	68.8 Gaining Persistent Access to a File
	68.9 Summary

	69. An Android Storage Access Framework Example
	69.1 About the Storage Access Framework Example
	69.2 Creating the Storage Access Framework Example
	69.3 Designing the User Interface
	69.4 Adding the Activity Launchers
	69.5 Creating a New Storage File
	69.6 Saving to a Storage File
	69.7 Opening and Reading a Storage File
	69.8 Testing the Storage Access Application
	69.9 Summary

	70. Video Playback on Android using the VideoView and MediaController Classes
	70.1 Introducing the Android VideoView Class
	70.2 Introducing the Android MediaController Class
	70.3 Creating the Video Playback Example
	70.4 Designing the VideoPlayer Layout
	70.5 Downloading the Video File
	70.6 Configuring the VideoView
	70.7 Adding the MediaController to the Video View
	70.8 Setting up the onPreparedListener
	70.9 Summary

	71. Android Picture-in-Picture Mode
	71.1 Picture-in-Picture Features
	71.2 Enabling Picture-in-Picture Mode
	71.3 Configuring Picture-in-Picture Parameters
	71.4 Entering Picture-in-Picture Mode
	71.5 Detecting Picture-in-Picture Mode Changes
	71.6 Adding Picture-in-Picture Actions
	71.7 Summary

	72. An Android Picture-in-Picture Tutorial
	72.1 Adding Picture-in-Picture Support to the Manifest
	72.2 Adding a Picture-in-Picture Button
	72.3 Entering Picture-in-Picture Mode
	72.4 Detecting Picture-in-Picture Mode Changes
	72.5 Adding a Broadcast Receiver
	72.6 Adding the PiP Action
	72.7 Testing the Picture-in-Picture Action
	72.8 Summary

	73. Android Audio Recording and Playback using MediaPlayer and MediaRecorder
	73.1 Playing Audio
	73.2 Recording Audio and Video using the MediaRecorder Class
	73.3 About the Example Project
	73.4 Creating the AudioApp Project
	73.5 Designing the User Interface
	73.6 Checking for Microphone Availability
	73.7 Initializing the Activity
	73.8 Implementing the recordAudio() Method
	73.9 Implementing the stopAudio() Method
	73.10 Implementing the playAudio() method
	73.11 Configuring and Requesting Permissions
	73.12 Testing the Application
	73.13 Summary

	74. Working with the Google Maps Android API in Android Studio
	74.1 The Elements of the Google Maps Android API
	74.2 Creating the Google Maps Project
	74.3 Creating a Google Cloud Billing Account
	74.4 Creating a New Google Cloud Project
	74.5 Enabling the Google Maps SDK
	74.6 Generating a Google Maps API Key
	74.7 Adding the API Key to the Android Studio Project
	74.8 Testing the Application
	74.9 Understanding Geocoding and Reverse Geocoding
	74.10 Adding a Map to an Application
	74.11 Requesting Current Location Permission
	74.12 Displaying the User’s Current Location
	74.13 Changing the Map Type
	74.14 Displaying Map Controls to the User
	74.15 Handling Map Gesture Interaction
	74.15.1 Map Zooming Gestures
	74.15.2 Map Scrolling/Panning Gestures
	74.15.3 Map Tilt Gestures
	74.15.4 Map Rotation Gestures

	74.16 Creating Map Markers
	74.17 Controlling the Map Camera
	74.18 Summary

	75. Printing with the Android Printing Framework
	75.1 The Android Printing Architecture
	75.2 The Print Service Plugins
	75.3 Google Cloud Print
	75.4 Printing to Google Drive
	75.5 Save as PDF
	75.6 Printing from Android Devices
	75.7 Options for Building Print Support into Android Apps
	75.7.1 Image Printing
	75.7.2 Creating and Printing HTML Content
	75.7.3 Printing a Web Page
	75.7.4 Printing a Custom Document

	75.8 Summary

	76. An Android HTML and Web Content Printing Example
	76.1 Creating the HTML Printing Example Application
	76.2 Printing Dynamic HTML Content
	76.3 Creating the Web Page Printing Example
	76.4 Removing the Floating Action Button
	76.5 Removing Navigation Features
	76.6 Designing the User Interface Layout
	76.7 Accessing the WebView from the Main Activity
	76.8 Loading the Web Page into the WebView
	76.9 Adding the Print Menu Option
	76.10 Summary

	77. A Guide to Android Custom Document Printing
	77.1 An Overview of Android Custom Document Printing
	77.1.1 Custom Print Adapters

	77.2 Preparing the Custom Document Printing Project
	77.3 Creating the Custom Print Adapter
	77.4 Implementing the onLayout() Callback Method
	77.5 Implementing the onWrite() Callback Method
	77.6 Checking a Page is in Range
	77.7 Drawing the Content on the Page Canvas
	77.8 Starting the Print Job
	77.9 Testing the Application
	77.10 Summary

	78. An Introduction to Android App Links
	78.1 An Overview of Android App Links
	78.2 App Link Intent Filters
	78.3 Handling App Link Intents
	78.4 Associating the App with a Website
	78.5 Summary

	79. An Android Studio App Links Tutorial
	79.1 About the Example App
	79.2 The Database Schema
	79.3 Loading and Running the Project
	79.4 Adding the URL Mapping
	79.5 Adding the Intent Filter
	79.6 Adding Intent Handling Code
	79.7 Testing the App
	79.8 Creating the Digital Asset Links File
	79.9 Testing the App Link
	79.10 Summary

	80. An Android Biometric Authentication Tutorial
	80.1 An Overview of Biometric Authentication
	80.2 Creating the Biometric Authentication Project
	80.3 Configuring Device Fingerprint Authentication
	80.4 Adding the Biometric Permission to the Manifest File
	80.5 Designing the User Interface
	80.6 Adding a Toast Convenience Method
	80.7 Checking the Security Settings
	80.8 Configuring the Authentication Callbacks
	80.9 Adding the CancellationSignal
	80.10 Starting the Biometric Prompt
	80.11 Testing the Project
	80.12 Summary

	81. Creating, Testing, and Uploading an Android App Bundle
	81.1 The Release Preparation Process
	81.2 Android App Bundles
	81.3 Register for a Google Play Developer Console Account
	81.4 Configuring the App in the Console
	81.5 Enabling Google Play App Signing
	81.6 Creating a Keystore File
	81.7 Creating the Android App Bundle
	81.8 Generating Test APK Files
	81.9 Uploading the App Bundle to the Google Play Developer Console
	81.10 Exploring the App Bundle
	81.11 Managing Testers
	81.12 Rolling the App Out for Testing
	81.13 Uploading New App Bundle Revisions
	81.14 Analyzing the App Bundle File
	81.15 Summary

	82. An Overview of Android In-App Billing
	82.1 Preparing a Project for In-App Purchasing
	82.2 Creating In-App Products and Subscriptions
	82.3 Billing Client Initialization
	82.4 Connecting to the Google Play Billing Library
	82.5 Querying Available Products
	82.6 Starting the Purchase Process
	82.7 Completing the Purchase
	82.8 Querying Previous Purchases
	82.9 Summary

	83. An Android In-App Purchasing Tutorial
	83.1 About the In-App Purchasing Example Project
	83.2 Creating the InAppPurchase Project
	83.3 Adding Libraries to the Project
	83.4 Designing the User Interface
	83.5 Adding the App to the Google Play Store
	83.6 Creating an In-App Product
	83.7 Enabling License Testers
	83.8 Initializing the Billing Client
	83.9 Querying the Product
	83.10 Launching the Purchase Flow
	83.11 Handling Purchase Updates
	83.12 Consuming the Product
	83.13 Restoring a Previous Purchase
	83.14 Testing the App
	83.15 Troubleshooting
	83.16 Summary

	84. Working with Material Design 3 Theming
	84.1 Material Design 2 vs. Material Design 3
	84.2 Understanding Material Design Theming
	84.3 Material Design 3 Theming
	84.4 Building a Custom Theme
	84.5 Summary

	85. A Material Design 3 Theming and Dynamic Color Tutorial
	85.1 Creating the ThemeDemo Project
	85.3 Designing the User Interface
	85.4 Building a New Theme
	85.5 Adding the Theme to the Project
	85.6 Enabling Dynamic Color Support
	85.7 Previewing Dynamic Colors
	85.8 Summary

	86. An Overview of Gradle in Android Studio
	86.1 An Overview of Gradle
	86.2 Gradle and Android Studio
	86.2.1 Sensible Defaults
	86.2.2 Dependencies
	86.2.3 Build Variants
	86.2.4 Manifest Entries
	86.2.5 APK Signing
	86.2.6 ProGuard Support

	86.3 The Property and Settings Gradle Build File
	86.4 The Top-level Gradle Build File
	86.5 Module Level Gradle Build Files
	86.6 Configuring Signing Settings in the Build File
	86.7 Running Gradle Tasks from the Command Line
	86.8 Summary

	Index

